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ABSTRACT

Numerous approaches to flight control system design have been proposed in an
attempt to govern the complex behavior of high performance aircraft. Gain scheduled
linear control and adaptive control have traditionally been the most widely used
methodologies, but they are not without their limitations. Gain scheduling requires large
amounts of a priori design information and - s,!y manual tuning in conjunction with flight
tests, while still lacking an ability to accommodate unmodeled dynamics and model
uncertainty beyond a limited amount of robustness that can be incorporated into the design.
Adaptive control is suitable for nonlinear systems with unmodeled dynamics, but has
deficiencies in accounting for quasi-static state dependencies. Moreover, inherent time
delays in adaptive control make it difficult to match the performance of a well-designed gain
scheduled controller. An alternative approach that is able to compensate for the
inadequacies experienced with traditional control techniques and to automate the tuning
process is desired.

Recent learning techniques have demonstrated an ability to synthesize multivariable
mappings and are thus able to learn a functional approximation of the initially unknown
state dependent dynamic behavior of the vehicle. By combining a learning component with
an adaptive controller, a new hybrid control system that is able to adapt to unmodeled
dynamics and novel situations, as well as to learn to anticipate quasi-static state
dependencies is formed.

This thesis explores the concept of augmenting an adaptive flight controller with a
learning system. The goal is to examine the extent to which learning can be used to
improve the performance of an adaptive flight control system architecture, as well as to
highlight some of the difficulties introduced by learning augmentation. Performance of the
control system is defined in terms of its ability to control a nonlinear, three-degree-of-
freedom aircraft model reacting to altitude and velocity commands. This hybrid approach
offers potential advantages over conventional techniques in terms of performance, model
uncertainty accommodation, and tuning costs.

Thesis Supervisor: Dr. Milton B. Adams
Title: Lecturer, Department of Aeronautics and Astronautics

Technical Supervisor: Mr. Wal.'er L. Baker
Title: Senior Member of Technical Staff, Draper Laboratory
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1 INTRODUCTION

Numerous approaches to flight control system design have been proposed in an

attempt to govern the behavior of high performance aircraft. This class of aircraft presents

formidable challenges to the designer since by nature their dynamics are nonlinear,

multivariable, and coupled (Etkin (1982)). Moreover, high performance aircraft tend to

exhibit modes with relatively high natural frequencies and minimal damping as compared to

typical aircraft. Gain scheduled linear control and adaptive control appear to be the most

popular methodologies for flight control law design, but they are not without their

limitations. Gain scheduling techniques combine multiple linear control laws to formulate a

nonlinear controller (Lewis & Stevens (1992)). This process requires large amounts of a

priori model information and potentially costly manual tuning, since a separate linear

controller must be designed for each of a selected set of distinct regions of the operating

envelope. In addition to this tedious design approach, gain scheduled controllers lack the

ability to accommodate unmodeled dynamics and model uncertainty beyond a limited

amount of robustness that can be incorporated into the design. Adaptive control is suitable

for nonlinear systems with unmodeled dynamics but has deficiencies in effectively

accounting for quasi-static state dependencies. Moreover, inherent time delays of adaptive

control make it difficult to match the performance of an ideal gain scheduled controller

(Stein (1980)). This thesis presents an alternative approach that compensates for some of

the inadequacies experienced with these traditional control techniques.

By combining an adaptive component with a learning system, an innovative new

hybrid controller is formed that allows each mechanism to focus on the control objective for

which it is best suited. The primary role of the adaptive control component in the hybrid

system is to accommodate unmodeled dynamics (i.e., dynamical behavior that is not
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expected, based on the design model). Additionally, the adaptive component has the

auxiliary task of providing estimates of any observed unmodeled state dependent dynamic

behavior to the learning system (i.e., unknown dynamics that are a function of state in

areas of the state space where learning has not occurred). These estimates are obtained by

observing previous plant behavior, essentially providing delayed estimates. Moreover,

since no use is made of past estimates, the adaptive component can be considered to act

without memory. Based on the estimates from the adaptive component, a learning system

can be used to learn a functional approximation of these state dependencies and ultimately

reduce model uncertainty in the system. Connectionist networks (which include artificial

neural networks) have demonstrated the ability to synthesize highly nonlinear, multivariable

mappings (Funahashi (1988), Homik, et al. (1989)). More specifically, spatially localized

connectionist networks have been proposed as an appropriate learning system for control

applications (Baker & Farrell (1992)). Armed with a mapping from the learning system

that represents the previously unknown state dependencies, the hybrid controller can

anticipate vehicle behavior that is a function of state and compensate accordingly,

effectively removing the delay in the estimates provided by an adaptive controller. The

impact of a controller that has the ability to anticipate vehicle behavior can be seen in

improved closed-loop system performance. Moreover, this ability to learn state

dependencies offers advantages over conventional techniques in terms of model uncertainty

accommodation and automation of the tuning process.

1.1 PROBLEM DESCRIPTION

This thesis presents the development and application of a hybrid control system to

the problem of flight control for a high performance aircraft. Time Delay Control (TDC), a

model reference adaptive controller, is augmented by a linear-Gaussian connectionist

network, to form the hybrid flight control system. This hybrid system is applied to the
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control of the longitudinal motion of a high performance aircraft during various altitude and

velocity maneuvers. Due to nonlinearities, model uncertainty, unknown dynamics, and a

host of other difficulties, high performance aircraft present a significant challenge to the

development of flight control systems.

1.2 THESIS OBJECTIVES

This thesis explores the use of a learning system to augment an adaptive flight

controller. The extent to which learning can be used to improve an adaptive flight control

system architecture, as well as the difficulties introduced by learning augmentation, are

examined. The primary objective of this thesis is to illustrate the advantages of a hybrid

adaptive / learning control system in terms of its ability to accommodate unmodeled

dynamics and reduce state dependent uncertainties in the system model. This hybrid

approach offers advantages over conventional techniques in terms of performance,

robustness, and design refinement costs.

1.3 OVERVIEW

In Chapter 2, the challenges associated with high performance aircraft control law

design are outlined. Moreover, background information on traditional control techniques is

provided to serve as a foundation for the hybrid control law development, and also as a

basis for comparison of alternative designs. The theoretical concepts underlying

connectionist learning systems, as well as some approaches in using learning systems for

control, are also presented.

In Chapter 3, the technical aspects of the hybrid control law are developed. This is

accomplished by first presenting the underlying theory of the adaptive component and the

spatially localized learning system before moving on to the derivation of the hybrid system.
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General characteristics of the hybrid controller are also presented.

In Chapter 4, two experiments are presented to illustrate the implementation and

performance of the hybrid control law. The first experiment uses the hybrid system to

control a relatively simple nonlinear aeroelastic oscillator. Due to the low dimensionality of

the plant, and a known truth model, the analysis and evaluation of the hybrid control

system for the aeroelastic oscillator is greatly simplified. In the second experiment, the

hybrid system is applied to a realistic high performance aircraft model. Descriptions of the

major components of the aircraft model as well as its significant characteristics are also

provided. An evaluation of aircraft performance when controlled by the hybrid system is

presented and compared with other designs for various simulations. Learning system

characteristics are also described.

Chapter 5 summarizes the major contributions of this thesis. In addition,

recommendations for future research are presented.

A bibliography of the works used in preparing this thesis follows Chapter 5.
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2 BACKGROUND

The design of automatic flight control systems for high performance aircraft

presents significant challenges for the control engineer. Although well-developed design

methodologies exist for linear systems, similar methodologies and related theories for

nonlinear systems have proven to be elusive. In this chapter, the formidable challenges

inherent in high performance aircraft control system design are presented in Section 2.1,

conventional control approaches for accommodating these difficulties are presented in

Section 2.2, while the fundamentals of connectionist learning systems and some

approaches for learning control are introduced in Section 2.3.

2.1 HIGH PERFORMANCE AIRCRAFT CHARACTERISTICS

Because the aerodynamic forces and moments that act on an aircraft are

complicated, nonlinear functions of many variables, aircraft exhibit complex flight

dynamics. This section discusses the major difficulties associated with high performance

aircraft flight control design.

Due to the high cost and dangers involved in flight testing, the majority of the effort

in flight control system design and development relies on a model of the aircraft instead of

the actual vehicle. This approach guarantees the presence of model uncertainty since it is

impossible to capture the complete dynamical behavior of complex aircraft in a model.

Errors in the model can be attributed to two major factors: structural and parametric

uncertainty (Baker & Farrell (1991)). Typically, the mathematical structure of an aircraft

model is derived from the general equations-of-motion for a single, rigid body. These are

the classical Euler equations. From this base set of equations, the designer determines
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additional effects that must be included to obtain an effective flight control system design.

Gyroscopic effects due to the presence of spinning rotors and aeroelastic effects due to

inaccuracies in the rigid body assumption have historically been incorporated into the

equations-of-motion. Beyond the difficulties associated with the selection and development

of the proper model structure, the accuracy of the actual parameter values used in the model

plays a large role in the quality of an aircraft model. Since values of the parameters are

typically obtained from wind-tunnel testing or computational fluid dynamics (e.g.,

computer sirn. !ations of airflow over an aircraft model), large discrepancies are possible.

Additional model uncertainty develops from the fact that not all flight conditions L..A be

easily modeled by a single global model structure. For this reason, separate models are

needed for post-stall flight, vertical take-off modes, and other extreme flight conditions. In

general, all models contain a degree of uncertainty that must be addressed by thc flight

control system.

Nonlinearities present a major difficulty to the control engineer since no general

theory for control design synthesis has been developed for nonlinear systems. Aircraft

dynamical behavior is inherently nonlinear; this nonlinear behavior is caused primarily by

the fact that the aerodynamics forces and moments that dictate aircraft motion are

themselves complicated, nonlinear functions of many variables. Moreover, the full six-

degree-of-freedom rigid body equations-of-motion include nonlinear terms. The effects of

actuator rate limiting, control position limits, and other control linkages are further

examples of nonlinearities.

Another complication experienced with flight control law design is that high

performance aircraft are inherently high dimensional, multivariable systems. A six-

degree-of freedom aircraft requires twelve coupled state equations to fully characterize its

rigid body dynamics. Moreover, multiple control effectors (e.g., stabilator, rudder,

ailerons, and throttle) are employed to achieve the primary objective of simultaneously

controlling a number of outputs (e.g., altitude, heading, and velocity). As a result, any
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control system that attempts to decouple the dynamics and connect independently designed

single-input / single-output controllers will generally sacrifice performance for ease of

design.

The "high performance" qualifier on the aircraft model implies expanded flight

regimes that also tend to exacerbate control difficulties. These regimes include high angle-

of-attack, high Mach, and other regions of the aircraft envelope where large changes in the

aircraft dynamics can be expected. For example, a dynamic mode that is stable and

adequately damped in one region of the envelope may become lightly damped or unstable in

another. This fact, combined with the general trend toward relaxed static stability, requires

rapid control action to stabilize the aircraft.

The above discussion illustrates the major challenges in flight control law design.

Additional difficulties confront the control engineer due to the design methods themselves

(e.g., frequency domain methods do not easily lend themselves to multivariable control)

and due to challenges in applying the control approach to the real vehicle (e.g., digital

implementation issues).

2.2 TRADITIONAL CONTROL TECHNIQUES

Automatic flight control systems have evolved from the "Sperry Aeroplane

Stabilizer," the first functional autopilot, to advanced multivariable digital systems capable

of generating a large number of control actions per second (Lewis & Stevens (1992)). Of

the multitude of design theories and methodologies developed for flight control law design,

the majority can be classified into the two broad categories: fixed control (e.g., robust

control and gain scheduled control) and adaptive control. The following sections introduce

these traditional control approaches. Each technique is critiqued in its ability to

accommodate the design difficulties presented in the previous section.
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2.2.1 Robust Control

Robust control has gained popularity for flight control due to its ability to

accommodate a certain degree of uncertainty associated with the aircraft model. By

explicitly incorporating uncertainty into the design process, robust controllers provide

performance and stability guarantees. However, this resilience to uncertainty, or

robustness, is usually obtained at the expense of a loss in system performance. Since

typical robust control techniques (e.g., classical Bode gain / phase margin methods or H.

design) rely on a worst case estimate of the modeling error or margins to determine a fixed

parameter control system, the resulting control law is often conservative when applied to

the nominal plant and presents a tradeoff between stability robustness and high

performance. Thus, a control system designed to account for modeling uncertainty results

in suboptimal performance relative to the ideal case where no model uncertainty exists. To

increase performance, the designer can exploit an improved model having less uncertainty.

However, the added complexity and cost of a more refined model often prohibits this

course of action. Beyond difficulties in achieving maximum performance, robust

controllers are ill-adapted to handle highly nonlinear systems or unmodeled dynamics. In

particular, although slight perturbations due to nonlinearities or unknown dynamics can be

accommodated by further increasing the bounds on uncertainty, difficulties in achieving

adequate performance are further exacerbated. For highly nonlinear aircraft with

substantial unmodeled dynamics or model uncertainty, robust control is impractical from a

performance point of view.

2.2.2 Gain Scheduling

Flight control systems for modern high performance aircraft are generally

developed with a gain scheduling design methodology. Gain scheduling methods combine

multiple linear control laws to formulate a nonlinear controller. This control approach can

accommodate many of the difficulties associated with complex nonlinear systems, such as

8



high performance aircraft. To formulate this nonlinear control law, the operating envelope

is separated into an ad hoc set of distinct regions where the dynamical behavior is

approximately linear. By linearizing the dynamics in each distinct region, the designer is

able to utilize the large class of linear control theories (e.g., robust or optimal approaches)

to develop a control law best suited to realize local performance objectives. The combined

nonlinear control law is achieved by transitioning among these linear control laws as flight

conditions move among the prescribed linearized regions. Transitioning is accomplished

by interpolating the control parameters (e.g., feedback gains) as a function of scheduling

variables or operating condition. Mach number, angle-of-attack, and dynamic pressure are

the most commonly used scheduling variables. As a result, highly nonlinear systems

require numerous linearized regions, and subsequently a multitude of linear control laws, to

approximate nonlinear behavior.

In addition to the subjective (and tedious) nature of defining a set of linearized

operating regimes and designing a linear control law for each linearization point, gain

scheduled flight control systems are also susceptible to model uncertainty and unmodeled

dynamics. Differences between the observed and predicted vehicle behavior can only be

corrected by on-line manual tuning during flight testing.

2.2.3 Adaptive Control

Adaptive control has been suggested as a viable method for aircraft flight control

(Lewis & Stevens (1992), Stein (1980)). Adaptive techniques generally rely on differences

between desired and observed vehicle behavior to adjust (adapt) variable internal

parameters to ultimately achieve acceptable closed-loop performance. Using this approach,

adaptive controllers have shown an ability to accommodate nonlinear plants with

unmodeled dynamics. However, adaptive controllers encounter difficulties in systems with

rapidly varying parameters and extensive nonlinearity. In an adaptive technique, the

controller must wait until undesired plant behavior is observed before it can determine how

9



to adjust its parameters. Potentially, several control intervals might be required to

accurately detect and compensate for variations in these parameters. Beyond this delay

associated with determining the correct parameters, sensor noise causes additional delay

due to the required filtering. For vehicles that regularly experience large parameter

variations, the resulting control law may spend large portions of time in some suboptimal,

partially adapted configuration. This dilemma is exacerbated by the reactive nature of

adaptive controllers in that the parameters must be re-tuned whenever the vehicle enters a

new region, even if the correct values had previously been determined for that region.

Hence, adaptive controllers fail to make use of predictable behavior (e.g., state

dependencies) that would reduce the time spent in partially adapted states and ultimately

improve performance. For these reasons, it is difficult for an adaptive controller to match

the performance of a well designed gain scheduled controller.

Although not as common as gain scheduling or adaptive approaches, multi-region

adaptive controllers have also been suggested as a means for flight control (Athans, el al.

(1977), Stein, et al. (1977)). Essentially, this approach schedules multiple local plant

models within an indirect adaptive control framework.

2.3 CONNECTIONIST LEARNING SYSTEMS

Connectionist learning systems have received much attention in the research

community due to their potential for solving problems in pattern recognition, associative

memory, and database retrieval (Melsa (1989)). Moreover, recent attention has been given

to the ability of connectionist networks to synthesize multivariable, nonlinear mappings and

to how this information can be applied to improve automatic control systems. In this

section, a brief history regarding the development of a class of connectionist learning

systems that is relevant to the control problem described earlier is presented. Some

alternative approaches for incorporating connectionist systems into control system designs

10



are also introduced.

2.3.1 Foundations of Connectionist Systems

Connectionist systems, which include what are often called "artificial neural

networks," owe their foundations to biologists and research psychologists who originally

studied the ability of neural models to mimic the behavior of the brain (Rosenblatt (1962),

Klopf (1988)). Contemporary connectionist systems have advanced significantly from

these early beginnings (Barto, et al. (1983), Rumelhart, et al. (1986)). Many of the recent

connectionist learning systems emphasize the mathematical theory of function

approximation, estimation, and optimization (Baker & Farrell (1992), Poggio & Girosi

(1990)).

Connectionist learning systems typically contain a large number of simple

processing units that are combined in a highly interconnected architecture. These

processing units, also known as nodes or "artificial neurons," make up the basic building

blocks of a connectionist system. Figure 2.1 illustrates the internal structure of a simple, 3-

input node

x 2 2

Figure 2.1 3-Input /I 1-Output Simple Node

where xj, x2, and X3 are the node inputs, w1, w2, and w3 are weightings for the respective

inputs, and y is the sum of the weighted inputs. The output of the network, z, is simply

the value of the nodal functionf evaluated at y. Nonlinear nodal functions are required to

realize nonlinear mappings. Three examples of nodal functions are the threshold,
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sigmoidal, and Gaussian functions.

If a large amount of a priori information is known about the desired mapping of the

network, the weights between the nodes can be set to fixed values to realize the network

mapping. However, typical connectionist networks use nodes with fixed functions and

adaptable weights that are adjusted using an appropriate learning law. Under supervised

learning, the amount of weight adjustment is determined by evaluating an error formed by

the difference between the calculated output of the network and a known desired output

(Melsa (1989)). This contrasts with the weight adaptation by unsupervised learning, where

only inputs and a reinforcement signal that characterizes past performance (i.e., not a

known desired output) are utilized in adjusting the weights (Barto (1989), Mendal &

McLaren (1970)). Thus, the operation of adaptable connectionist networks consists of two

distinct phases: output calculation and learning. The output calculation phase is

characterized by the determination of the network output based upon the given inputs,

weights, and nodal functions. The purpose of the learning phase is to adjust the weights

(using either a supervised or unsupervised technique) to obtain desired input / output

behavior.

Connectionist networks are frequently categorized by the nodal architecture and

associated output calculation or by the learning technique. One common architecture

dependent on a specific output calculation method is the feedforward connectionist network

(Funahashi (1988), Homik, et al. (1989)). In feedforward structures, the output for any

given node is not connected back as an input to itself by any feedback loop. Because of

this feature, present outputs do not impact future output values (present outputs can impact

future outputs in the learning phase by adjustment of the weights). Moreover, the output of

the entire system can be calculated in a single pass since each layer simply outputs

computed values based on inputs from the previous layer. Figure 2.2 illustrates a simple

feedforward network.

12



Output

Inputs X

Figure 2.2 Simple 2-Input / 1-Output Feedforward Network

Another major class of connectionist systems consists of feedback (or recurrent)

networks. The distinguishing feature of a feedback network is that nodes have the ability

to influence themselves through feedback. The feedback can act directly from a given node

to itself or indirectly through other nodes. Although feedback networks have an ability to

learn dynamical mappings (e.g., mappings that change with time), the learning laws

become complicated since the network output is no longer simply a function of network

inputs and weights (it is also a function of the state of the network). Moreover, any

feedback network representing a dynamical mapping can be expressed as an equivalent

dynamic system of two static mappings separated by an integration or unit delay operator

(Livstone, et al. (1992)).

By altering the nodal function, output calculation, learning approach, or a host of

other variables, connectionist networks have been developed that display an array of

different properties (Barto (1989), Melsa (1989), Minsky & Papert (1969)). Section 2.3.2

discusses some of the most popular early connectionist systems.

2.3.2 Early Connectionist Networks

One of the earliest uses of a connectionist methodology for learning was the

perceptron network (Rosenblatt (1962)). A simple perceptron network is comprised of

single or multiple layers of perceptron nodes connected in a feedforward configuration. A

perceptron node is characterized by the binary threshold function used to formulate the

output from the weighted sum of its inputs as shown in Figure 2.3. If the weighted sum is

13



greater than some prescribed threshold value, the perceptron node outputs an "on" signal or

the value 1. For inputs below the threshold, the node is considered "off" and outputs -1.

fJy)

1 if y> threshold
- if y < threshold y

-1

threshold

Figure 2.3 Binary Threshold Function

Perceptron networks have illustrated surprisingly powerful mapping capabilities.

Minsky and Papert demonstrated the ability of single-layer perceptron networks to learn

any discriminant function among classes that are linearly separable, using a simple learning

rule (Minsky & Papert (1969)). The learning rule adjusts the weights incrementally

depending on their impact on the error between the network output and the prescribed

output. It was later shown that multi-layer perceptron networks are capable of

discriminating a large class of nonlinearly separable problems. However, no general

guarantee on the ability of any learning law to locate an optimal set of weights exists for

multi-layer networks as in the single-layer case.

Another pioneering connectionist network is the adaptive linear element, or

ADALINE (Widrow & Hoff (1960)). ADALINE networks consist of simple nodes

connected in a feedforward architecture. The distinguishing features of an ADALINE

network include a nodal function that simply outputs the weighted sum of the inputs (i.e.,

fly) = y) and a normalized least mean square (LMS) learning law. Under supervised

learning where the current inputs and desired output are known, the LMS learning law

14



attempts to minimize the mean squared value of the error. When the weights are changed in

proportion to the error, an ADALINE network is guaranteed to converge to the minimum of

the mean squared error for linearly separable problems. In an attempt to extend this result

to nonlinearly separable problems, ADALINES can be connected in a hierarchical structure

to form a network of multiple adaptive linear elements (MADALINES). Although

MADALINES are capable of producing complicated nonlinear mappings, determining the

optimal weights between layers of ADALINES is a difficult process. These difficulties are

the result of LMS learning laws being limited to the determination of optimal ADALINE

weights and not the weights associated with their connecting layers (Melsa (1989)).

2.3.3 The Backpropagation Network

Although the advent of perceptrons, ADALINES, MADALINES, and their variants

played a large role in the development of connectionist networks, the latest resurgence of

interest in learning systems can be attributed to the backpropagation sigmoidal network.

Although backpropagation is strictly speaking a learning law, its extensive use has resulted

in the name being generalized to denote the large class of feedforward multi-layer networks

that employ this particular learning approach. Similar to the early architectures,

backpropagation networks are constructed from the combination of simple nodes arranged

in a hierarchical, feedforward fashion. However, instead of the threshold and identity

functions associated with the simple perceptron and ADALINE networks respectively, the

backpropagation node uses a nonlinear nodal function. One of the most commonly used

nodal functions is the sigmoidal function illustrated in Fig 2.4.
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Figure 2.4 Sigmoidal Function

A sigmoidal function is a continuous, monotonically increasing function with finite

asymptotic values. As a result, a sigmoid offers advantages over discontinuous nodal

functions in that it is continuously differentiable, which plays a large role in the gradient

learning algorithm described below.

A typical sigmoidal backpropagation network is shown in Figure 2.5. This

network architecture is generally sub-divided into three distinct regions or layers: input

layer, hidden layers, and output layer.

I I
Input Layer Hidden Nodal Layers Output Layer

" output

I I

Figure 2.5 Typical 2-Input /I -Output Feedforward Network with Three Hidden Layers
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The first region, the input layer, is characterized by nodes that act as an interface between

network inputs and the subsequent hidden layer by simply passing the input value to a set

of nodes in the first hidden layer (although weighting is sometimes added to the signal).

Moreover, there is the same number of nodes in the input layer as there are inputs, and each

input layer neuron typically passes its value to each node in the subsequent layer. The

second region contains the hidden nodal layers. In this region, the weighted sum of the

outputs from the previous layer is used as the input to each sigmoid function to compute the

output of the node. The output is subsequently passed to a following hidden or output

layer. The final region is the output layer, which contains the same number of output

nodes as there are network outputs. The function of the output layer is to compute the

weighted sum of its inputs and pass this value, or the value of a sigmoid function evaluated

at this weighted sum, as the network output. Typically, the number of processing nodes in

backpropagation networks is large compared to the number of different kinds of nodal

functions used in the network, with networks using a single nodal function being the most

common.

Although the selection of the network architecture is significant, the performance of

connectionist networks is ultimately determined by the ability of the learning law to find the

optimal weights. For backpropagation networks, weights are adjusted using an "error

backpropagation" algorithm (Rumelhart, et al. (1986)). Whereas the learning laws of early

connectionist networks had difficulties in properly adjusting connecting layer weights, the

error backpropagation algorithm provides a systematic method to adjust weights in all

adaptable layers. The basic error backpropagation algorithm uses a supervised gradient

descent method to incrementally adjust the weights in the negative direction of the gradient

(with respect to the weights) of a cost function. The general form of the gradient rule is

shown in Equation (2.1) below:

Aw = -a- (2.1)
1w

17



where w is a vector whose elements are the input weights, a is the learning rate (i.e., the

step size), and J is the cost function to be minimized. The most commonly used cost

function to be minimized is a quadratic function of the error between the network output

and some desired output. In many supervised learning applications, the network is trained

on a finite number of (known) input / output sample points. In this case, known as batch-

mode training, the quadratic error cost function takes the following form.

= 1  [d(xi) - f.,(xi,w)]T [d(x ) - f., (xi,w)] (2.2)

Here, n is the number of training examples, xi is the network input for the ith training

sample, d(x,) is the desired output at the ith training sample, and f,.,(x,,w) is the actual

output of the network for the given input and weights. Using this technique, the weights

are adjusted once per each pass or epoch through all the training examples. Recalling that

the output of a layer is a function of the output of the previous layers, the partial derivatives

of the cost function with respect to an individual weight can be found by forming a chain

rule of partial derivatives and working backward along the same connections as the original

forward path. Since the sigmoid is a continuous function, the partials always exist.

Hence, propagation of the errors backward during the learning stage requires essentially the

same amount of computation time as the forward calculation of the network output.

As with all gradient descent methods, the presence of local minima prevent any

guarantees being placed on the ability of the learning algorithm to converge to the optimal

solution. Moreover, simple gradient descent algorithms tend to converge slowly,

especially if there are "troughs" in the error surface (Baird (1991)). Since the goal of

learning is to follow the gradient in a downhill direction, a small learning rate results in

slow convergence. If the learning rate is too high, the weight vector may completely

bypass the trough to some possibly suboptimal plateau or oscillate across the bottom of the

trough with little movement in the direction of the minimum.

If an acceptable learning rate is used, or if one of several techniques for speeding up

18



convergence is applied (e.g., adding momentum terms to the weight update equation

(Rumelhart, et al. (1986)) or using second order derivative information on the cost (Jacobs

(1988))), backpropagation networks have shown the ability to adequately map highly

nonlinear functions. In fact, sigmoidal backpropagation networks with more than one

hidden layer can represent any function to a desired degree of accuracy given enough nodes

and training samples (Funahashi (1988), Hornik, et al. (1989)). This universal function

approximation property has played a major role in the resurgence of the sigmoidal

backpropagation network in applications ranging from pattern recognition to automatic

control. However, one should recall that due to the presence of local minima in J, there is

no guarantee that a given learning rule will actually yield the weights that represent the

desired mapping.

Many variants of connectionist networks have been developed in an attempt at

improved learning. However, the majority of all systems have one common characteristic.

Learning is essentially a process of functional approximation, where inputs and desired

outputs are synthesized to form a multivariable, nonlinear mapping. The type of learning

system used and its associated details are dependent on the specific application. Section

3.2 presents one such specialized approach that is used for the learning augr.,,ented control

of a high performance aircraft.

2.3.4 Connectionist Learning Systems for Control

Due to their ability to approximate smooth multivariable, nonlinear functions,

connectionist learning systems have generated a large amount of interest among control

engineers. However, a single, systematic approach for the application of connectionist

learning systems to control has not yet materialized. This section briefly introduces a small

subset of commonly used approaches for learning control, and lists references where

further discussion may be found.

Copying an existing controller is perhaps one of the simplest techniques in
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applying connectionist learning systems to control. Assuming there exists a controller that

is able to control the plant, the objective of the connectionist learning system is to

synthesize the mapping between the inputs and the desired output supplied by the existing

controller. Using this approach, the learning system can replace an existing controller in

situations where the existing controller is impractical (e.g., where it is dangerous for a

human to control the plant) or where the learning system offers a less costly representation.

This approach was successfully applied to a pole balancing problem by Widrow & Smith

(1964), where the existing control law was supplied by a human.

Direct inverse control is another method of applying a connectionist learning

system to control (Werbos (1989)). Using this approach, the objective of the learning

system is to identify the plant inverse. This is accomplished by providing the output of the

plant as the network input and the input to the plant (i.e., control signals) as the desired

network output. If the network has a plant inverse (i.e., if there is a unique plant input that

produces a unique plant output), then when the desired plant output is provided as input to

the network, the resulting network output is the control to be used as input to the plant

(Barto (1989)). The drawbacks to this technique are that a desired reference trajectory must

be known in order to supply the network with the desired plant output and the inverse of

the plant must be well-defined (i.e., a 1-to-1 mapping between inputs and outputs must

exist).

In the backpropagation through time method developed by Jordan (1988), two

connectionist learning systems are used. The objective of the first network is to identify the

plant, from which one can efficiently compute the derivative of the model output with

respect to its input by means of back-propagation. Subsequently, propagating errors

between actual and desired plant outputs back through this network produces an error in the

control signal, which can be used to train the second network (Barto (1989)). This

approach offers an improvement over direct inverse control since it is able to accommodate

systems with ill-defined inverses, although the desired trajectory must still be known.
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Another approach for incorporating learning into a control system is to augment an

adaptive technique with a learning system to form a hybrid controller (Baker & Farrell

(1990), Baird (1991)). Augmentation of the adaptive technique may be implemented using

a direct or indirect approach. Using a direct approach, the learning system generates a

control action (or set of control parameters) associated with a particular operating condition.

This control action is then combined with a control action produced by the adaptive system

to arrive at the control that is applied to the plant. In contrast, for the indirect approach, the

objective of the learning system is to improve the model of the plant. Here, the learning

system generates model parameters that are a function of the operating condition. The

learned model parameters are combined with adaptive estimates to arrive at a model of the

plant. Given a presumably improved plant model, an on-line control law design is used to

form the closed-loop system. A particular indirect learning augmented approach is used in

this thesis and is developed in Chapter 3.

Reinforcement learning has also been suggested as a method of applying

connectionist learning systems for control (Mendal & McLaren (1970), Barto (1989),

Millington (1991)). The major difference between reinforcement learning and the

previously discussed approaches is that under reinforcement learning, the objective is to

optimize the overall behavior of the plant, so that no explicit reference / desired trajectory is

required. As a result, reinforcement learning essentially involves two problems, the

construction of a critic that is capable of evaluating plant performance in a manner that is

consistent with the actual control objective, and the determination of how to alter controller

outputs to improve performance as measured by the critic (Barto (1989)). The latter of the

two problems can be addressed by one of the previously discussed techniques.
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3 TECHNICAL APPROACH

As discussed in Chapter 2, control law design for high performance aircraft

presents challenging and unique problems to the designer. Traditional techniques have

proven to be either prohibitively costly in terms of the effort required in tuning and the

complexity of developing a multi-region linearized gain scheduling design, or have simply

sacrificed performance for ease of design. This chapter formally presents an innovative

method of integrating an adaptive component with a learning component to form a new

hybrid control law. The hybrid system is presented by introducing each component

separately and then combining the components in a synergistic arrangement to form a

superior flight control system.

3.1 ADAPTIVE CONTROL COMPONENT

Numerous adaptive control techniques have been developed for nonlinear systems

with unmodeled dynamics or model uncertainty (Astrom & Wittenmark (1989), Slotine &

Li (1991)). One major class of adaptive control, model reference adaptive control

(MRAC), is considered in this thesis. The majority of MRACs can be grouped into two

general categories, namely, direct and indirect adaptive control. Direct adaptive control

approaches are characterized by the synthesis of control signals directly from observed

plant behavior without the benefit of an explicit plant model. In contrast, the indirect

adaptive control methods rely heavily on an explicit plant model. The control law for an

indirect technique employs a local plant model that is updated from observed plant

behavior. Although developing and periodically updating a plant model is not without its

own costs, indirect techniques have the advantage that many different control design
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techniques that are based on explicit plant models can be used. In either case, the adaptive

control system reacts to differences between desired and predicted behavior by adjusting

internal parameters to achieve desired closed-loop performance. These differences in

behavior are typically attributed to nonlinearities, unmodeled dynamics, model uncertainty,

or exogenous disturbances.

Although conventional adaptive control methods have the ability to stabilize and

control some nonlinear systems, the closed-loop system is often unable to match the

performance of a well-designed and well-tuned gain scheduled controller. This difference

in performance stems from inherent time-delays or lags associated with adaptive

controllers. Typically, the process of updating parameters of an adaptive control law

requires several control intervals to accurately detect and compensate for variations in the

plant behavior. Sensor noise exacerbates this dilemma since the required filtering creates

additional lag. Adaptive control approaches also have performance limitations when

presented with quasi-static state dependent disturbances. In particular, since adaptive

controllers are reactive by nature, they are unable to learn and subsequently predict state

dependent behavior (Baker & Farrell (1992)). Even if the plant repeatedly experiences the

same disturbance at a particular location in the state space, the adaptive controller must wait

until the effects of the discrepancy are observed before it can initiate changes in the

parameters. Hence, adaptive controllers fail to make complete use of experientially gained

knowledge. As will be discussed in a following section, this inadequacy of adaptive

control can be overcome with the addition of a learning component.

The primary role of the adaptive control component in the hybrid system is to

accommodate unmodeled dynamical behavior (i.e., behavior that is not expected based on

the design model). Additionally, the adaptive component of the hybrid system has the

auxiliary task of presenting estimates of any observed unmodeled state dependent dynamic

behavior to the learning component (i.e., unknown dynamics that are a function of state in

areas of the state space where the learned mapping can be improved).

23



3.1.1 Control Law Derivation

Consistent with the above discussion, any adaptive control approach that is

applicable to nonlinear dynamic systems with model uncertainty and that develops estimates

of unknown state dependent components of the plant dynamics is a candidate for the

adaptive component in the hybrid control system. Adaptive techniques that require small

amounts of on-line computation are especially appealing since extra computing power will

be required to train the learning component. One such adaptive control technique is based

on Time Delay Control (TDC). Developed by Youcef-Toumi (1990), TDC is an indirect

adaptive technique designed for the class of systems with discrete nonlinear dynamics

represented in the following form:

x(k + 1) = g{x(k),k} + h{x(k),k} + ru(k) + d(k) (3.1)

Notationally, g and h represent known (modeled) and unknown nonlinear plant dynamics

vectors, respectively. These vectors are functions of the state x and discrete time k.

Furthermore, d is an unknown, possibly time-varying disturbance vector. The control

vector is represented by u and acts linearly through the control input matrix F on the new

state. It will be assumed here (in this subsection only) that F is known without error.

Section 3.3 addresses the issue of uncertainty in r.

Overview of TDC

TDC uses a simple estimation technique to detect and compensate for unknown

dynamics and unexpected disturbances. By examining the difference in the dynamical

behavior between the current state of the plant and that expected (given knowledge of the

state and control at the previous time step and the modeled terms of Equation (3.1)), TDC

constructs a combined estimate of the unknown dynamics h and disturbances d at the

current time. Using this estimate (formed from state and control information at the

previous time step), it is possible to form a control law that attempts to cancel the undesired
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known dynamics, the estimated unknown dynamics, and the estimated disturbances.

Desired state dynamics can then simply be "inserted" along with a proportional error term

to achieve desired tracking error dynamics.

Critical to the TDC control law is the method of obtaining the estimates of the

unknown dynamics and unexpected disturbances. By employing information from the

previous time step, TDC is able to react rapidly to changes in the dynamical behavior of the

plant. This characteristic is ideal for systems that operate in an environment with large

variations in the unknown dynamics and unexpected disturbances. However, this

beneficial feature is not without some cost. Since TDC basically "differentiates" the state in

arriving at the control action, any sensor noise affecting the observed values of the state and

control will be amplified, resulting in noisy control signals and possible rate or position

saturation of the actuators. This effect translates into poor performance and possibly to

instabilities. To counter the effects of noise, filters are used. Although filters can

accommodate noise, they add additional lag which reduces the performance of the adaptive

system.

Development of TDC

The full development of the TDC control law is contained in Youcef-Toumi &

Osamu (1990). For the sake of completeness, the fundamental equations are summarized

below.

Assume that the plant can be written in the following form:

x(k + 1) = Ox(k) + h{x(k),k} + ru(k) + d(k) (3.2)

where x is an n dimensional state vector, u is an m dimensional vector of control inputs, I

is an n by n state transition matrix, L is an n by m control weighting matrix, and h and d

are n dimensional unknown state dynamics and disturbance vectors respectively. Notice

that Equation (3.2) is a special case of Equation (3.1), since the current state acts linearly

on the new state. Here, Ox(k) can be viewed as the best time-invariant, linear
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approximation of the known function gfx(k),k), linearized about a selected operating

condition. This assumption essentially shifts plant nonlinearities and time dependencies to

the unknown dynamics term h.

Define a desired n dimensional reference trajectory Xm to be the following linear,

time-invariant system:

x ,(k + 1) = xj,,(k) + r.r(k) (3.3)

where Om is an n by n reference state transition matrix, Im is an n by m reference model

command weighting matrix, and r(k) is an m dimensional vector of reference commands.

There is no requirement that the reference model be a linear, time-invariant system.

Moreover, it is assumed that the reference command r(k) is constrained in a way that the

desired reference trajectory is achievable by the system described by Equation (3.2).

The difference between the desired reference state and plant state is the error vector:

e(k) = x.,(k) - x(k) (3.4)

The control objective of TDC is to force this error vector to zero with the following desired

error dynamics defined in terms of an error dynamics transition matrix e:

e(k + 1) = 4D,e(k) (3.5)

By expressing Oe in terms of Om, the error dynamics can be written as

0, = 0. + K (3.6)

where K can be viewed as an error feedback matrix.

The control signal u that yields the desired error dynamics is obtained by

incrementing Equation (3.4) one time step forward and substituting Equations (3.2)

through (3.6) as follows:

e(k + 1)= x,(k + 1)- x(k + 1)

abe(k) = ',,x,,(k) + Tr(k) - 4x(k) - h{x(k),k} - F'u(k) - d(k)

ru(k) = 4'mx,(k) + rmr(k) - O4x(k) - h{x(k),k} - d(k) - 4be(k)

Fu(k) = [0,b - 0]x(k) + F,.r(k) - h{x(k),k} - d(k) - Ke(k)
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Notice that the terms h and d on the right hand side of Equation (3.7) are

unknown. They will be replaced by estimates h and a. In particular, if h and d change

relatively slowly, then their estimated value can be obtained by solving Equation (3.2) at

the previous time step, yielding an estimate of the sum of the two terms h and d:

hix(k),k} + a(k) = h{x(k - 1),k- 1} + d(k- 1) (3.8)
= x(k) - (Dx(k- 1)- Fu(k- 1)

Here we assume full knowledge of the state and control values x(k), x(k-1), and u(k-1).

Unless r-1 exists, which implies that n = m so that the number of inputs equals the

number of states, Equation (3.7) will not have a general, exact solution. Nevertheless, an

approximate solution can be generated as follows

u(k) = r -[[O, -4]x(k) + rr(k) - h{x(k),k} - d(k) - Ke(k)] (3.9)

where r+ is the pseudo-inverse of r. The use of the pseudo-inverse of the control

weighting matrix is necessitated by the fact that the majority of control systems have more

states than controls. The following pseudo-inverse

r= -[ r T1 
r (3.10)

results in the minimization of the L2 norm fliT - 1112*

Substituting Equations (3.8) into Equation (3.9) results in the TDC control law

u(k) = -FKe(k) (error feedback)

+r[,, - C]x(k) (state feedback)
(3.11)

+rr.,r(k) (command feedforward)

+ a] (cancellation)

The first term in Equation (3.11), error feedback, represents proportional feedback of the

error between the desired and actual state at time k. The state feedback term determines

the contribution of the state at discrete time k to the control. This term is a function of the

difference between the desired trajectory dynamics and the linearized approximation of the

plant dynamics. Commands enter the control law through the command feedforward
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term. As compared to the feedback terms, the command term is feedforward in the sense

that it is an open-loop term that is not a function of plant state. The cancellation term

attempts to cancel the unknown dynamics and disturbances at the present time k by using

approximations based on observed behavior at the previous time k-i.

3.1.2 Implementation Issues

The design parameters of the TDC control law include those associated with the

reference model dynamics (m, 1r) and desired tracking error dynamics 0e (or

equivalently the error feedback matrix K = 4e- Om). Of course, these parameters cannot

be selected in an arbitrary manner. As alluded to in the previous section, TDC requires the

use of a pseudo-inverse in the control law calculation due to the fact that the majority of

systems have more states than controls. Hence, the control weighting matrix is singular

and cannot be exactly inverted. By inserting Equation (3.11) into (3.2), the following

constraint must be met in order for the plant state to track the model state with the desired

error dynamics:

{I - IT+}[O. - ?]x(k) + F.r(k) - hfx(k),k} - d(k) - Ke(k)} = 0 (3.12)

Notice that if r is square and invertible, then the first factor on the left hand side

guarantees that the constraint is always met. If this is not the case, then values for the

design parameters 0m, rm, and K must be selected to minimize the error of Equation

(3.12) for arbitrary r, h, and d. Alternatively, 17+ can be selected so that the nonzero

second factor on the left hand side of Equation (3.12) is in the nullspace of (I-rr+).

However, the approaches for meeting the constraint of Equation (3.12) when r is non-

square are generally difficult.

Beyond this constraint issue, the error feedback matrix K is chosen to achieve the

desired error dynamics 0 e. Typically, error dynamics have been chosen as a function of

the reference model dynamics (e.g., twice as fast). However, other selections can be

28



accommodated as long as the error dynamics are stable.

Selection of a desired reference model (0m, l'm) is frequently application specific.

Although there is no requirement on the method used to generate a reference model for a

flight control application, typical design specifications are often stated in terms of

characteristics of linear, time-invariant (LTI) systems. For example, military aircraft must

meet MIL-F-8785C (1980) specifications for natural frequency and damping ratio of their

characteristic modes. Thus, a LTI system is often employed in the role of a reference

model. The reference model for the aircraft control problem addressed by this thesis is

discussed in Section 4.3.3.

3.2 LEARNING CONTROL SYSTEM

The purpose of the learning system in the hybrid control law is to synthesize a

mapping between the state and controls of the plant and an estimate of the unknown

dynamics fh generated by an adaptive component. As discussed previously, connectionist

networks have demonstrated an ability to learn highly nonlinear, multivariable mappings.

In this section, the complete development of the learning system employed in the hybrid

controller is presented.

3.2.1 Incremental Learning and Fixation

Since the objective of the network in control applications is to synthesize a mapping

over a continuous input space, the training cost function in Equation (2.2) cannot be used

directly (i.e., the number of training examples is not a finite set). As a result, one common

approach for systems with a continuous input space is to use incremental learning (Baker

& Farrell (1991), Rumelhart, et al. (1986)). Incremental learning algorithms seek to

reduce a cost function defined in terms of the current input point rather than a cost function

defined over a fixed set of samples as in Equation (2.2). Using this approach, the cost
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function defined in Equation (2.2) reduces to the single term

J = I[d(x) - f, ,(x, p)]T[d(x) - f,., (x, p)] (3.13)
2

where d(x) is the desired network output at current state x and fnet(x,p) is the output of

the network as a function of state and parameters p. The general parameter vector p is used

in Equation (3.13) to allow for nodal functions that are not simply a function of the state

and weights. An incremental learning approach essentially provides a convenient, point-

wise contribution to an aggregate cost function similar to Equation (2.2) since it can be

computed quickly and efficiently.

During incremental learning, care must be taken to ensure that samples are

sufficiently distributed throughout the input space so that over a finite period of time, the

individual point-wise contributions of Equation (3.13) collectively provide an

approximation to a batch-type cost function in Equation (2.2). Since paramete-s are

updated at each sample, the network reacts to mapping errors at the current input.

Unfortunately, sigmoidal networks possess a relatively high degree of "generalization,"

where parameter changes impact the network mapping over potentially large regions of the

input space. As a consequence, the localized nature of incremental learning can result in

"fixation" of the network, where the network attempts to achieve an accurate mapping at the

current state, while potentially degrading an acceptable mapping already learned in other

regions of the input space (Baker & Farrell (1992)).

The magnitude of the fixation problem is determined by the rate of mapping

degradation in outlying regions relative to the time required to receive samples from all

regions of input space. This rate of outlying mapping degradation is in turn determined by

the degree of generalization and the learning rate. A network with a high level of

generalization requires rapid and extensive distribution of sampling points or a very small

learning rate to avoid problems associated with fixation. For control problems, the former

is generally not possible since the sampling process is constrained by the system dynamics.
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Furthermore, extensive investigation of the state space is typically inconsistent with the

control objectives. This point is most evident in regulation, where the goal is to keep the

system near some operating point. Due to such constraints on the sampling process, an

alternative approach to avoiding fixation during incremental training is to reduce the degree

of global generalization in the network. Such spatially localized networks are discussed in

the next section.

3.2.2 Spatially Localized Learning

The basic idea of spatially localized learning is that experience (learning) in a local

region of the input space should only affect the mapping in that particular locality, with a

marginal effect in all other areas. Spatially localized learning prevents knowledge that has

already been collected in other regions of the mapping from becoming incorrectly perturbed

(i.e., corrupted). This is accomplished by lessening the extent of generalization to include

only a local region. Figure 3.1 illustrates the concept of spatially localized learning. Let

f.,,(x;p ,p ..... pN) represent the mapping to be learned, where x is the input vector and

p .... , pN are a set of parameters to be learned that define the mapping.

Domain of fnet f,,,(x D"; p)Ragofne

Figure 3.1 Spatially Localized Learning: the Ideal Case

Figure 3.1 shows a region of the domain Dn of the function to be learned being mapped to

an associated region of the range Rn.The ideal situation for localized learning, as indicated

in the figure, is that this local mapping be a function of a subset of the parameter set
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denoted pn. Thus, the learning based on samples in Dn will only cause the subset of

parameters pn to change. Of course, this represents the ideal situation which is not

practical for a variety of reasons. However, the objective is that the result of learning from

input samples in one region of the domain should not significantly alter previously learned

mappings in distant regions of the domain.

This local generalization property of spatially localized learning contrasts with

typical structures (e.g., sigmoidal networks) that are characterized by a much larger, more

global generalization. The following discussion introduces and develops one example of a

spatially localized learning system that is used in the hybrid control system. Learning is

accomplished by an incremental gradient descent learning algorithm.

3.2.3 The Linear-Gaussian Network

One learning system design that exhibits spatially localized properties is the linear-

Gaussian network. The linear-Gaussian network is an example of a local basis / influence

function system (Baker & Farrell (1992), Millington (1991)). The network mapping is

constructed from a set of hyperplanes that act as "basis" functions over a localized region of

the input space. Although many functions could be used as a local basis, hyperplanes offer

an attractive choice for the control problem due to their simple structure and similarity with

conventional gain scheduled mappings. The influence function associated with each local

basis function is an elliptic hyper-Gaussian. As the name suggests, the role of the

influence function is to determine the region of applicability of a particular local basis

function in the input space. For example, a basis function associated with a hyper-

Gaussian whose center is very close to the current input plays a much larger role in the

determination of the output of the mapping than a basis function whose Gaussian is

centered far away from the current input. The following discussion details the linear-

Gaussian network.
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Node De~scriptions

The local basis function of a linear-Gaussian node is formed by adding the

weighted sum of the inputs with a bias. Equation (3.14) shows the relationship between

the Ph linear basis function Li and its inputs, x:

Li(x) = W, (x -x.)+ b,. (3.14)

Here, if n is the number of node inputs and m is the number of node outputs, then Li is an

m dimensional vector, x is a n dimensional vector of node inputs, Wi is an mxn matrix

whose elements are the weights on the input, xio is a n dimensional vector that represents

the center of the Gaussian nodal function described below, and bi is a m dimensional bias

vector.

The linear-Gaussian node uses a hyper-Gaussian as an influence function for the

basis Li in Equation (3.14). The value for the ith Gaussian function Gi is given by:

Gi(x) = exp[I(X - x) T (D )2(x- x.)] (3.15)

where DLi is a diagonal matrix containing values for the spatial decay of the Gaussian, x0i is

the Gaussian center, and x is the input vector. Figure 3.2 contains an illustration of a

typical Gaussian function.

G(x)

Xo

Figure 3.2 Gaussian Function

The Gaussian is a continuous function with finite asymptotic values. Moreover, a
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Gaussian is differentiable over the entire input space, which is important in any learning

algorithm that relies on partial derivative information for training (e.g., gradient methods).

The output of the linear-Gaussian node is simply the product of the linear basis function

and the Gaussian influence function. The general structure is shown in Figure 3.3

Xn .00 L(x)G(x)

Xn

Figure 3.3 Linear Gaussian Node

where IB represents a summing node with bias and ii a multiplication node. By dividing

the ith Gaussian function by the sum of all the Gaussians, the resulting quotient is the

normalized ith influence function, /l. This relationship is shown in Equation 3.16 below

F( - G (x) (3.16)
XiG(x)
i--|

where

IF (x)=l and O<F.(x)<l (3.17)

Combining Equations (3.14) through (3.16) yields the following equation for the m

dimensional vector output of a linear-Gaussian network:

Y(x) i WL(x)F(x) (3.18)
i3I
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Network Architecture

Linear Gaussian networks use a feedforward architecture and consist of three main

layers: input, hidden, and output as depicted in Figure 3.4. The first layer of the network,

the input layer, simply passes the input values to the subsequent hidden layer. As one

would expect, there are the same number of input nodes as there are network inputs. The

hidden layer is not directly observable to the external environment. This hidden layer

contains two elements, namely the linear-Gaussian nodes and nodes that normalize the

Gaussian influence function. By adding enough linear-Gaussian nodes, a single hidden

layer network can provide arbitrarily accurate function approximations. Furthermore,

multiple hidden layers of linear-Gaussian nodes lead to non-localized mappings. For these

reasons, only linear-Gaussian networks with a single hidden layer are investigated. The

final layer is the output layer. It contains as many nodes as there are outputs. A typical

linear-Gaussian network is shown in Figure 3.4

Input Layer Hidden Layer I Output Layer

I I

Figure 3.4 Multi-Input, Single Output Linear Gaussian Network

where the negative sign of the rightmost rI node indicates that the argument is reciprocated

prior to the multiplication.
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Learning Algorithm

The linear-Gaussian network uses a supervised, incremental gradient descent

algorithm to adjust the network parameters in the negative direction of their gradient with

the cost function:

pi(k +1) = p(k)- - o>0 (3.19)

ik

where pi is a vector of the adjustable parameters of the ith node (e.g., weight matrix

elements, bias, spatial decay, or center) and J is the cost at a particular training sample, and

a is the learning rate. The typical cost used for linear-Gaussian networks ;s shown in

Equation (3.20)

J= I[d(x)-fg(xp)]T[d(x)- f,,(x,p)] (3.20)

2

where d is the desired output as a function of input state x, and f is the output of the

network as a function of input state and network parameters p. In minimizing the cost at

each step (i.e., for each training sample), all of the parameters, or just a subset, can be

adjusted using Equation (3.19). The local learning rate for each parameter can be adjusted

independently in order to achieve a more rapid convergence.

Besides the basic nodal and architectural differences, the learning algorithm of the

linear-Gaussian network also differs from that of the classic sigmoidal network. Since the

normalized Gaussian influence functions represent a measure of the significance that each

node has on a particular value of the input x (i.e., the influence of each node on the output

for a given input), it is reasonable to eliminate insignificant nodes from the learning

calculation. Due to the elimination of these nodes, the computational efficiency and hence

the training time of the network are improved. For example, for a given input value x, the

learning algorithm might first order the Gaussian nodes by their normalized influence and

use only enough nodes so that the sum of the normalized influences equals or exceeds

some threshold value (e.g., 99%). Since the remaining nodes have only a minor effect on
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the local region, their outputs need not be included in the parameter update. For large

networks, this can result in a substantial reduction in computation.

Application Issues

The number of nodes needed by a linear-Gaussian network is dependent on the

characteristics of the function it is attempting to approximate and on any requirements

placed on the desired rate of convergence and the level of acceptable errors in the learned

mapping. Although no set of strict rules has been developed for selecting the number of

nodes, several guidelines do exist. For functions that are very smooth, the mapping can be

realized with relatively few nodes spread evenly throughout the input space. A large

number of nodes will not improve this mapping and will only serve to increase the network

training time. However, more complex functions with large local variations will require a

large number of nodes, each with a relatively small sphere of influence.

The sphere of influence of a Gaussian function is determined by the spatial decay

matrix. Hence, the spatial decay matrix is a factor in determining the size of the local

regions in the input space. If the spatial decay is large, the transitions between the regional

linear basis functions will be more abrupt if the density of basis functions is not high. This

property is ideal for more complex functions. However, a large spatial decay will require

many more nodes to sufficiently map the entire input space. In contrast, small spatial decay

rates result in large regions of influence that are ideal for smooth, slowly varying functions.

Initial values for the weights, biases, and Gaussian centers must also be selected.

The basis function described by a weight matrix and bias vector represent a best guess of

the desired mapping based on a priori information. Hence, values for the weights and

biases can be initialized from an existing gain scheduled controller or other linearizable

control law. In cases with considerable a priori knowledge, the adjustable parameters are

presumably much closer to their optimal values, and training time is greatly reduced. If no

a priori knowledge is available about the mapping, the weights and biases are set to zero.
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The initialization of the Gaussian centers effectively locates the influence functions in the

input space, and generally, the centers are placed so that the entire input space is spanned.

In summary, a linear-Gaussian network is one example of a spatially localized

learning system. This network combines linear basis functions with Gaussian functions to

provide the properties of local learning and the generalization properties of typical

connectionist networks. Networks that employ spatially localized learning are required for

control systems that regularly encounter scenarios that might cause fixation, as described in

Subsection 3.2.1. Although linear-Gaussian networks tend to require more nodes and thus

more memory (due to localization), improved learning efficiency and, more importantly,

better functional mappings can be obtained.

3.3 HYBRID LEARNING / ADAPTIVE CONTROL

The hybrid control law developed in this section represents one approach to

combining a learning system with an adaptive component with the objective of improving

performance in the presence of unmodeled dynamics and model uncertainty. In

augmenting an indirect adaptive controller with a connectionist learning system, the general

goal is to develop a control law that combines the strengths of each component.

3.3.1 Hybrid Control System Architecture

Adaptive control systems are capable of controlling complex dynamic systems.

However, traditional adaptive control techniques only react (after the fact) to differences

between actual and expected behavior - they have no anticipatory capacity. Learning in

connectionist systems is fundamentally a process of function approximation. Hence, given

the vehicle state and the applied control as an input and the unknown dynamics as desired

outputs, a connectionist learning system is capable of realizing a mapping of the state and

control dependent dynamics. Thus, by augmenting an adaptive controller with a learning
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system, it is possible to anticipate the state dependent components of the plant dynamics by

"looking up" the values of that component of the dynamics for the current situation from

the network, instead of waiting for an adaptive component to react to observed differences

between the actual and expected state values. By incorporating a learning system into the

control law, the hybrid controller is able to use experientially gained knowledge.

Figure 3.5 illustrates the control system architecture of the hybrid adaptive / learning

controller (Baker & Farrell (1991)).

command Indirect control state

Adaptive Plant
Control
System

Anticipated Posterior I
Behavior Estimate ,

Learning

System

Figure 3.5 Hybrid System Architecture

The role of each component in the hybrid system is straightforward. The adaptive

component provides an adaptive capability to accommodate unmodeled dynamic behavior

that is not expected (based on the design model). Moreover, it provides a posterior

estimate of any unmodeled state and control dependent behavior which can be used to train

the learning system. The role of the learning system is to anticipate vehicle behavior that

varies predictably with the current state and control.

3.3.2 Learning Versus Adaptation

Since both the adaptive component and the learning component in the hybrid control

system are based on parameter adjustment algorithms that use information gained by
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observing the closed-loop behavior of the plant, one might think it is difficult to distinguish

between the two components. However, for the majority of systems, distinguishing

qualities do exist. The following discussion presents the different goals and characteristics

of the adaptive and learning components in an attempt to differentiate the two.

The adaptive component of the hybrid system can be characterized by its reactive

approach to accommodating local disturbances and apparent time-varying dynamics.

Nonlinearities that are a function of the operating condition of the plant appear to the

adaptive component as time-varying dynamics when they are actually changes in the local

linearized behavior of a nonlinear, time-invariant plant. Since adaptive controllers typically

lack the ability to associate the required changes in the control action as a function of the

operating conditions, the controller must continually adapt to all unexpected effects, even

those which are experienced repeatedly and are actually due to time-invariant nonlinearities.

In other words, adaptive controllers have no "memory" and are unable to anticipate

dynamics that are strictly a function of state. Thus, this lack of memory prevents any

anticipatory action by the controller. Moreover, to prevent a situation where the adaptive

controller is continuously in some suboptimal, partially adapted state, the generation of the

unknown dynamics estimate must be relatively fast when compared to the plant dynamics.

In summary, the adaptive component reacts to unexpected effects in order to maintain

locally desired behavior; it is best at accommodating novel situations and slowly time-

varying dynamics.

The reactive characteristics of the adaptive component directly contrasts with the

constructional emphasis of the learning component. In particular, the objective of the

learning component in the hybrid control law is to associate initially unknown state

dependent dynamics with the state and control at the current operating condition. The

association is essentially a memory function (or mapping) that stores experientially gained

knowledge. This knowledge of originally unknown dynamics can be exploited by the

hybrid control system as a means of anticipating transient behavior instead of waiting to
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react to errors observed in the output. Moreover, this allows the adaptive component to

focus on accommodating slowly varying exogenous (not state dependent) disturbances.

Since the objective of learning is to realize a mapping of state dependencies over the entire

operating envelope, the learning system is characterized by a global optimization and

relatively slow dynamics. Table 3.1 summarizes the major differences between adaptation

and learning (Baker & Farrell (1991)).

Table 3.1 Adaptation vs. Learning

ADAPTATION[ LEARNING

reactive: maintain desired behavior constructional: synthesize desired behavior

(local optimization) (global optimization)

temporal emphasis spatial emphasis

no "memory" * no anticipation "memory" => anticipation

fast dynamics slow dynamics

The goal of the hybrid controller is to combine the different behavioral

characteristics of the adaptive and learning components in a synergistic fashion. Ideally,

the adaptive controller accommodates local unmodeled dynamics and novel state

dependencies, while the learning system is responsible for reducing state and control

dependent model uncertainty.

3.3.3 Control Law Development

As discussed previously, TDC is one example of a particularly simple indirect

adaptive control approach. Recall that TDC calculates an estimate of the sum of the

unknown dynamics h and disturbances d at the previous time step by examining the

difference in the dynamical behavior between the current state of the plant and the expected

state given the state and control at the previous time step. Assuming that h and d do not

change significantly over a control time step, TDC uses this old value of the sum of h and
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d in formulating the control law. By integrating TDC with a learning component to form a

hybrid controller, ti..- -lay in the estimated value of h can be eliminated. Although this

delay is possibly insignificant with short control cycle times in the absence of sensor noise,

such is not the case in a more realistic environment. If the control law is generated at a fast

rate, the unknown dynamics and disturbances at the previous time will accurately reflect the

current values (in the absence of noise). However, as the cycle time is increased, the

potential for error in the estimates grows. If sensor noise is present, it is still possible to

predict the current state within a given tolerance. However, since h and d are essentially

found by taking the derivative of the state, sensor noise can have a large impact on these

estimates and subsequently the control generated by TDC.

The most common technique for offsetting the effects of sensor noise is to use a

filter. Note, however, that filtering the noise only adds to the delay already associated with

h and d. For this reason, a hybrid approach can offer significant advantages due to the use

of a connectionist learning system. Since sensor noise can alter the estimates of h and d

significantly, it is possible to have conflicting desired output values for the same input

(over time). Given this contrasting information, connectionist systems tend to learn the

average value. Thus, if the sensor noise is zero mean, which is the assumed case, the

correct mapping will still be realized by the learning system. Since the recall of the learned

ebtimates of the state dependent dynamics is nearly instantaneous, the hybrid system is

essentially able to remove the delay associated with the adaptive component.

As alluded to earlier, the hybrid control law can be derived by augmenting the TDC

equations with a learning component. Assume the nonlinear plant can be written in the

following form:

x(k + 1) = Ox(k) + Fu(k) + f,,{x(k),u(k)} + h{x(k), u(k),k} + d(k) (3.21)

where x(k) is an n dimensional state vector at discrete time k, u(k) is an m dimensional

control vector at k, 0 is an n by n state transition matrix, r is an n by m control weighting

matrix, h and d are n dimensional unknown dynamics and disturbances vectors
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respectively, and net is the n dimensional learned component of the state dependent

dynamics. Equation (3.21) differs from the form of the plant model used in the TDC

derivation only by the learned dynamics term fnet. Moreover, the unknown dynamics term

is allowed to be a function of control as well as state, essentially accounting for errors in

the assumed (but unlikely to be) perfectly known IF.

As before, the desired reference trajectory is given by

x.,(k + 1) = O.x.(k)+ 17.r(k) (3.22)

Here xm(k) represents the n dimensional desired model state vector at time k, Om is the n

by n state transition matrix defined by the linear relationship between the current and next

state, r(k) is the m dimensional command vector and r is the n by m model command

weighting matrix. As was the case with the derivation of the TDC control law in Section

3.1.1, there is no requirement that the reference model be linear. The only requirement on

the reference model is that the desired trajectory is achievable, otherwise the control law

may saturate the effectors and yield unsatisfactory performance.

If the difference between the desired reference state and plant state at discrete time k

is represented by the error vector

e(k) = x,(k) - x(k) (3.23)

then the control objective of the hybrid control law is to force this error vector to zero with

the following dynamics

e(k + 1) = [0,. + K]e(k) = O,e(k) (3.24)

where K is interpreted as the error feedback matrix and 4Oe is the desired error dynamics

matrix.

If Equations (3.21) through (3.23) are substituted into Equation (3.24), the control

signal u that yields the desired error dynamics is obtained from:

Fu(k) = [0, - O]x(k) + F1.r(k) - f, .,{x(k),u(k)} - h{x(k),k} - d(k) - Ke(k) (3.25)
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To isolate the functions on the right hand side of Equation (3.25) that are dependent on u at

the current time k, approximations for the unknown dynamics and disturbances as well as

the output of the connectionist network are made.

If h and d change relatively slowly, then their estimated value can be obtained (as

before) by solving Equation (3.21) at the previous time step, yielding

{,x(k), u(k), kl + a(k) = h{x(k - 1),u(k - 1),k - 1} + d(k - 1)

= x(k) - Ox(k- 1)- ru(k -1)- f., {x(k - 1), u(k - 1)})

The network function fnet in Equation (3.25) can be approximated using the first-order

Taylor series expansion shown in Equation (3.27) to isolate the linear dependence on u at

time k. Since the network is continuously differentiable, the Jacobian in Equation (3.27) is

known to exist. Moreover, this Jacobian information is already calculated since it is needed

for the learning algorithm discussed in Section 3.2.

ff{x(k), u(k)}-=f,,, x(k), u(k-1)+ df (u(k) - u(k - 1)) (3.27)
lu z(k).,(k-1)

Substituting these approximations into Equation (3.25) and solving for u at the

current time k (using a pseudo-inverse) yields the following hybrid control law:

u(k) = + 0 fl Ke(k)

+[r + df -] F.r(k)+Jr + -T-, ]" rfr( a

r+ t9 .+[ { ,x(k), u(k - 1)) - ~i~k U(-) u(k - 1)]

The differences between the TDC control law in Equation (3.11) and the hybrid control law

are the result of the added learning terms. The fifth term in Equation (3.28) represents the
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learned state dependent dynamics. The partial derivative of the network output with respect

to the control used in the pseudo-inverse calculation is a linear correction for errors in r as

discussed below.

Beyond removing the delay associated with a purely adaptive controller, the hybrid

control system is able to reduce model uncertainty. This is accomplished by using partial

derivative information for the learned network term with respect to the control inputs. For

example, if there are errors in the coefficients of the assumed linear control weighting

matrix r, or the control actually affects the next state in a nonlinear fashion, the partial of

the learned dynamics with respect to the control represents the locally linearized unmodeled

effect of the controls. Assuming accurate derivative information can be obtained from the

network, the actual manner that the controls impact the next state is thus the assumed linear

control weighting matrix corrected by this learned effect. The technique of using the

partial information to improve the a priori design and ultimately reduce model

uncertainty represents a potentially major improvement over the TDC control law.
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4 EXPERIMENTS

A learning enhanced hybrid flight control system is demonstrated using the realistic

model of a high-performance, supersonic aircraft that is described in Section 4.2.

However, because the complexity of this aircraft model makes control system analysis

difficult, the hybrid controller is first applied to a relatively simple nonlinear aeroelastic

oscillator, described in Section 4.1. For this simple example, an exact truth model of the

nonlinear plant dynamics is known, and the mapping that is synthesized by the control

system can be compared to the known dynamics.

The objective of the experiments detailed in this section is to illustrate some of the

properties of the hybrid control system. In particular, the goal is to demonstrate the ability

of the hybrid system to improve the control of a nonlinear plant with model uncertainty and

unmodeled dynamics that are a function of state and control. Both the aeroelastic oscillator

and the high performance aircraft fall into this category. A secondary objective is to

illustrate the learning characteristics of spatially localized connectionist networks when

applied to control systems.

Section 4.1 and Section 4.2 each begins with a description of the plant model of

interest (i.e., the aeroelastic oscillator and the high performance aircraft) and the physical

motion that the model represents. This description is followed by a brief discussion of the

open-loop dynamics and other characteristics of that model. Next, the reference model,

along with the motivation for its selection, is presented. Issues in applying the hybrid

control law to each plant are also discussed. This development is followed by two

experiments for each plant that highlight the capabilities of the hybrid controller.
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4.1 AEROELASTIC OSCILLATOR

4.1.1 Description

The aeroelastic oscillator models the motion of a square prism in a steady wind with an

external control force. If the aeroelastic oscillator is constrained to translational motion

normal to the incident wind, the dynamics resemble a classic mass-spring-dashpot system

with an additional aerodynamic lift force due to an effective angle-of-attack between the

wind and the prism (Parkinson & Smith (1963)). Figure 4.1 illustrates the aeroelastic

oscillator model, where V(t) is the incident wind, L(t) is the aerodynamic lift force,f(t) is

the control force, m is the mass of the square prism, r is the damping coefficient, and k is

the spring constant. The two state variables, position x(t) and velocity v(t), represent

motion normal to the incident wind.

L(t),f(t)

V(t) A

x(t),v(t)

r

Figure 4.1 Aeroelastic Oscillator Model

The aerodynamic lift force is a nonlinear function of the effective angle-of-attack of

the prism with respect to the incident wind. The effective angle-of-attack is due to the

motion of the prism as illustrated in Figure 4.2, where a denotes the effective angle-of-

attack and VREL is the relative velocity.
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V

Figure 4.2 Effective Angle-of-Attack

Although current aerodynamic theory does not offer an analytic solution for the flow

around a square prism, experimental data has been used to develop an approximation to the

coefficient of lift (CL) as a seventh-order polynomial of the effective angle-of-attack

(Parkinson & Smith (1963)). Expressions for the coefficient of lift as well as for the

resulting lift force L are given by:

CL = A,( _-) _ A3( ) 3 +A5_ )I _A 7( (4.1

L = lpV 2hlCL (4.2)
2

where the small angle approximation a = . / V has been used, p is the air density, h is the

side length of the prism, and I is the axial length of the prism. The differential equation

governing the dynamics of the aeroelastic oscillator is:

d2x dX
m-+r- +kx=L+ f (4.3)

dt2  dt

Equation (4.3) can be nondimensionalized by dividing through by kh and making

the following change of variables:
X phil a - V ; b ;r

n -= ; ; ) _; U=- b= ; "r = oth' 2m toh 2mo

Applying this change of variables and substituting for the lift from Equation (4.2) yields:

d2X f dX n4 ( d) nAdX'a) nAt (dXy + f (.- + 2b + X = nA,U---I " + U - (4.4)
drdr U kdr) U U7 \dTJ

Equation (4.4) can be rewritten in a state space realization as:
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x = X  x(4.5)

1o 1ix]l0ol[- 0 .1
= bl' +[ f + 3+ - nA RKX . (4.6)

-2 1 (nAU X2  11 [ x+ 3X 2  x2

where x1 and x2 are nondimensionalized position and velocity states, respectively.

Although the aeroelastic oscillator is a relatively simple second-order plant with a

single control variable (forcef), it still presents difficulties to conventional control design

techniques due to the nonlinearities and uncertain parametric values (e.g., A 1, A3 , A5 , A7)

for the lift force. For these reasons, the aeroelastic oscillator has been selected to illustrate

the properties of the hybrid controller.

4.1.2 Open Loop Dynamics

The nonlinearities in the open-loop dynamics of the aeroelastic oscillator in

Equation (4.6) are a function of both mass velocity and incident wind velocity. For low

incident wind velocities, the focus of the state trajectories in the phase plane is stable and

the plant returns to the origin after exogenous disturbances. However, for higher wind

velocities, the system tends to oscillate in a stable limit cycle. If the wind velocity is further

increased, state trajectories in the phase plane are characterized by two stable limit cycles

separated by an unstable limit cycle. Since the aeroelastic oscillator either returns to the

origin or exhibits a stable limit cycle in face of disturbances for any value of incident wind,

it is globally open-loop stable and a feedback loop is not required to provide nominal

(bounded input / bounded output) stability.

4.1.3 Reference Model

As discussed in Section 3.3, the hybrid control law is designed to cause the plant

state trajectory to follow a reference trajectory generated by a reference model. This

reference model has a significant influence on the performance of the closed-loop system,
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since by definition it represents the desired trajectory of the controlled vehicle states. As a

result, if an unsatisfactory reference model is selected, the vehicle acting under the hybrid

control law will also be unsatisfactory. Furthermore, if the reference model demands

unrealistic state trajectories (e.g., reference trajectories that are chosen without regard to the

limitations of the actual plant dynamics), control saturation leading to inadequate

performance or even instabilities (in the general case) can occur. For these reasons, the

reference model must be selected to yield satisfactory dynamics within the limitations of the

vehicle or plant as required by specifications.

For the aeroelastic oscillator, the reference model was chosen to be the linear

closed-loop system that results from applying an optimal linear quadratic control design to

the aeroelastic oscillator dynamics linearized about the origin. The quadratic cost functional

weights states and control equally. Thus, the objective of the hybrid control law is to force

the true nonlinear model to behave identically to the linear reference model. Although not a

requirement, a linear reference model is often used to achieve specifications (objectives)

that have been stated in terms of natural frequency and damping ratio requirements. The

reference model for the aeroelastic oscillator has been designed with a natural frequency of

1.12 radians per second and a damping ratio of 0.76.

4.1.4 Application of Hybrid Controller

To aid in the design, simulation, and analysis of the hybrid learning system, a

custom-built software package developed at Draper Laboratory and coined "NetSim" was

used. NetSim is a general-purpose simulation and design package that enables a variety of

connectionist learning control systems to be developed interactively (Alexander, et al.

(1991)). Through a graphical interface, pre-compiled code modules are connected in a

block diagrammatic format to form the desired system. For dynamic systems, typical

modules include plants, transforms (e.g., signal modifiers such as delays or switches),

summing and gain objects and even dynamic compensators. NetSim also contains design
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tools that allow the user to create connectionist networks by graphically specifying the

network nodes and architecture. All of the code modules are automatically linked together

at run time, resulting in a complete system in which the outputs can be viewed on-line

while the simulation is in progress.

The closed-loop simulation for the aeroelastic oscillator system uses four main

modules as illustrated in the block diagram in Figure 4.3. This figure is a screen dump of

the actual simulation window. The main modules include the reference model, hybrid

controller, aeroelastic oscillator, and linear-Gaussian network. In addition to these main

components, supporting operators are needed to modify the signals passed between the

main modules to deliver the expected variables in the proper time sequence. The arrows

between modules represent exchanges of variables, and the number in the lower left comer

of each block dictates the order of execution at each time step. Modules called more than

once per time step are shown with multiple sequence numbers.

Each module in Figure 4.3 performs a specific function in modeling the closed-loop

dynamic system. The first module in the sequence is Random. Random outputs a

randomly generated commanded position at the current time k. This command is held

constant for a user specified amount of time. Once that time has elapsed, a new command

is issued. AO Reference outputs the desired (model) state trajectory of the aeroelastic

oscillator for the given command. The reference trajectory is generated using a discrete

version of the optimal linear design as discussed above.
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_ Aeroelastic Oscillator Dynamic Simulation
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Figure 4.3 Block Diagram of the Aeroelastic Oscillator System

The AC Switch module supplies the network with the state and control at the

appropriate time. It also sends a flag to the network to insure that learning only occurs with

states and control at consistent times (e.g., learning occurs when the state, control, and

desired output are all at the same time instant). AO Network is a linear-Gaussian network

that serves as the learning system in the hybrid controller. The Multiplexor (shown with

sequence numbers 5 and 8) gathers the outputs from the network that are needed for

implementing the hybrid control law. Hybrid calculates the control signal based on the

hybrid control law developed in Section 3.3. This control signal is passed to the Aero

Oscillator module. The Aero Oscillator module contains the continuous nonlinear

equations-of-motion of the plant. These equations are integrated using either an Euler or

4 th order Runge-Kutte technique. The type and rate of integration, as well as plant

parameters and initial conditions, are selected by the user. Table 4.1 summarizes the output

of each module for one time step.

52



Table 4.1 Module Execution Summnary

Sequence # IModule IModule Output

1 Random r(k)

2 AO x.(k +1) = 4Dx.(k) +rIr(k)

_________Reference ____________________________

3 Switch x(k),u(k -1); Don' tLearn Flag

4 AO f,,,(x(k),u(k -1)); f.

Network

5 Multiplexor f, (x(k), u(k -1)) ; df.

6 Switch x(k-l),u(k-1); LearnFlag

7 AO f ,,,(x(k ), u(k - ))

Network

8 Multiplexor f.,f(x(k),u(k -1))

__________fM,,(x(k - ),u(k -1))

9 Hybrid u(k) = r +-~ t ek

du

I+ df] r~r(k)

F+ .~][f 1 x(k), u(k - 1)) - u(k - 1)]

10 Aero [2] £1 (nAgU- 24~x'] + [~
Oscillator0

+____ ______ X 3 + -2u X25- 7X2 7]
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4.1.5 Aeroelastic Oscillator Experiment 1

In experiment 1, a selected reference trajectory was repeated continuously in order to learn

the state dependent, previously unknown dynamics fnet. The control objective was simply

the regulation of both states about the origin given an initial position of-1 and velocity of

0.5. By using the geometry and velocity parameters for a particular incident wind velocity

found in Parkinson & Smith (1963), the equations-of-motion used in experiment 1 become:

3+1 7] (4.7)rl°
[Z] =X[0 1.2][x] +[1]u + [-26.1X2

3 + 127.3x2
5 - 158.9x2] (4.7)

The nonlinear terms Equation (4.7) were not supplied to the control system and represent

the unknown dynamics in Equation (3.21).

Figures 4.4 and 4.5 illustrate the reference trajectories for position and velocity

(based on the linear model described above) for the selected initial conditions and

command. These reference trajectories represent the desired states at each time step, and

any deviation from the reference by the actual states can be considered an error. The

position and velocity trajectories of the nonlinear aeroelastic oscillator controlled by TDC

alone (TDC Position / Velocity) are also shown in Figures 4.4 and 4.5 and are almost

indistinguishable from the reference. In this case, the TDC controlled trajectories were

produced by integrating the aeroelastic oscillator equations-of-motion at 200 Hertz and

generating a control signal at that same rate. Moreover, there was no noise in the observed

state and control values used by TDC. Combining these facts, it is not surprising that the

TDC controller does extremely well in generating a control law that drives the plant along

the reference trajectory. Indeed, because of the extremely small time step, the unknown

dynamics observed at the previous time provide an accurate estimate of the unknown

dynamics at the current time that is required by the TDC control law. Also plotted in

Figures 4.4 and 4.5 are the trajectories generated using the constant gains of the linear

controller used to form the linear reference model and applied to the actual nonlinear
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aeroelastic oscillator (labeled Linear Position / Velocity). Errors between trajectories under

this linear control and the reference trajectory are due primarily to the nonlinear

aerodynamic lift force. These plots show the degree of performance improv -- t (relative

to a linear feedback law) that is possible with an adaptive controller operating under ideal

conditions.

Position vs Time
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/""" TDC Position -

--... - -Linear Position

-1.0~

0 1 2 3 4 5 6

Time

Figure 4.4 Position trajectories for the reference model, linear control law, and TDC at
200 Hertz controller rate.
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Velocity vs Time
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Figure 4.5 Velocity trajectories for the reference model, linear control law, and TDC at
200 Hertz controller rate.

Since the sensing and computational requirements associated with generating state

information for the aeroelastic oscillator at the 200 Hertz integration rate may be unrealistic,

the controller is slowed to calculate the control signal at a more moderate rate. For this

experiment, the control was generated at 10 hertz. In order to produce unknown dynamics

that are a function of control as well as state, an unknown external force equal to three

times the control force was added to the unknown dynamics. In other words, the control

form in Equation (4.7) was modified from the assumed known value

to the applied value

[[01 +[0-]
where the added term is not known by the controller. A relatively large force error was

used to highlight the ability of the hybrid control system to reduce large uncertainties.

Consistent with the hybrid control law developed in Section 3.3, the learning
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system used a spatially localized network with 32 linear-Gaussian nodes. For training the

network, a learning rate of 1 was used with the spatial decay of all the nodes fixed at 2.

These values were selected based on the known mapping of the nonlinearities, the size of

the input space (i.e., range of all possible position, velocity, and control combinations),

and to a certain extent on trial and error. Initial values for the slopes and biases were set to

zero while the Gaussian centers were placed randomly in the unit cube formed by scaling

the state and control inputs. Figures 4.6 and 4.7 illustrate the hybrid controlled states for

the first learning trial compared to the TDC controlled states and reference model. Since the

slopes and biases of the learning system are initialized to zero, the learning system does not

impact the states at start-up, and all of the unknown dynamics are incorporated into the

TDC adaptive component. However, after a short time (within the first trial), the learning

system begins to build a mapping of the unknown dynamics. This mapping is used to

eliminate the delay associated with the unknown dynamics estimate in TDC and to improve

the estimate of the local linearized behavior (i.e., using the derivative information as

discussed in Section 3.3 to reduce model uncertainty). These features can be directly

related to the improved performance seen in the state tracking of the reference trajectory.
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Figure 4.6 Position trajectories for the reference model, TDC, and hybrid control law at
10 Hertz controller rate, first learning trial.
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0.8-

0 ... Reference Velocity
0.6 TDC Velocity

.4....._Hybrid Velocity
"D 0.4

>' 0.2-

0.0-

-0.21
0 2 4 6

Time

Figure 4.7 Velocity trajectories for the reference model, TDC, and hybrid control law at

10 Hertz controller rate, first learning trial.

After the trajectory is repeated 10 times, the learning system has built a mapping of

the previously unknown dynamics as a function of the state and control along that

trajectory. Figure 4.8 compares the estimate of the unknown dynamics used by TDC to
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that of the hybrid controller generated from the learned mapping (after 10 trials). Since the

mapping used to generate these points represents a static function, the unknown dynamics

can simply be looked up as a function of the current state and control. This can be

contrasted with TDC which uses an estimate of the unknown dynamics based on the state

and control at the previous time.

Unknown Dynamics vs Time

0.5' - - - --

0.4 ' TDC
------- Network
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Figure 4.8 Unknown dynamics evtimate from network and TDC after 10 trials.

As discussed in Section 3.3, the hybrid controller uses the output of the network

(fnet) as well as the derivative of the network output with respect to the control (Ofnetd u) to

formulate the control law. This derivative information provides local improvements to the

linear control weighting vector, r. Since the truth model for the aeroelastic oscillator is

known, it is possible to analyze the accuracy of the derivative information. For example,

the partial of the unknown dynamics with respect to the control force is simply, in

continuous time, the constant three (due to the added external control force). When

converted to discrete time, this value is 0.3182. After 10 trials, the networks mean value of

the afnet/]u is 0.2285. Although it has not yet learned the correct value, it nonetheless

provides some improvement to the control weighing matrix.
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Figures 4.9 and 4.10 illustrate the state trajectories controlled by the TDC controller

and the hybrid controller after 10 trials. Clearly, the hybrid controller uses experientially

gained knowledge to improve the tracking of the reference states.

Postion vs Time
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Figure 4.9 Position trajectories for the reference model, TDC, and hybrid control law at
10 Hertz controller rate, 10 trials.
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Velocity vs Time
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Figure 4.10 Velocity trajectories for the reference model, TDC, and hybrid control law at

10 Hertz controller rate, 10 trials.

This experiment shows that the hybrid controller has the ability to improve the

controlled performance of the aeroelastic oscillator when a specific trajectory is repeated

numerous times. This improved performance is realized by exploiting a learned functional

mapping of the previously unknown model dynamics to improve the control law. The next

experiment illustrates the ability to synthesize a mapping over a much larger input space,

using randomly generated state trajectories.

4.1.6 Aeroelastic Oscillator Experiment 2

In experiment 2, the desired trajectory is selected in a random fashion in order to

map the unknown dynamics over a much larger region of the state space than the single

trajectory in experiment 1. By commanding a random position between -1 and 1, a large

portion of the state space along with the associated controls is visited and subsequently

mapped. As in experiment 1, the aeroelastic oscillator was integrated at 200 Hertz and the

control signal issued once every 20 integrations (10 hertz). For this experiment, a spatially

localized learning system with 99 linear-Gaussian nodes was used. The spatial decay for
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each node was fixed to 1 and the initialization was the same as for experiment 1. The

number of nodes, spatial decay, and other parameters were again selected based on the

expected nonlinearities, size of the input space and trial and error.

Figure 4.11 (a) shows the mapping synthesized by the learning system as a function

of velocity and control. Learning was based on following the randomly generated

reference trajectory for 60 seconds (10 trials). This mapping is compared to the nonlinear

terms and extraneous control of the aeroelastic oscillator truth model shown in Figure

4.11 (b). Comparing the two plots, the slope in the control direction (force) for the network

mapping is nearly constant with a mean of 0.3120 and standard deviation of 0.0264

whereas the actual slope is 0.3182 (in the discrete time model). Moreover, the mappings in

the velocity direction appear very similar. Hence, the network has synthesized the

previously unknown dynamics of the system. (Note: the current version of the software

does not allow a direct error surface plot to be generated.)
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Figure 4.11 (a) Network Mapping of Unknown Dynamics (b) Actual Unknown
Dynamics.

Figures 4.12 and 4.13 illustrate the position and velocity trajectories for the TDC

and hybrid controlled states after 30 seconds of simulation. As predicted by the relatively

accurate mapping of the unknown dynamics, the position and velocity show improved
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performance for the hybrid controlled aeroelastic oscillator over that of TDC.
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Figure 4.12 Position trajectories for the reference model, TDC, and hybrid control law at
10 Hertz controller rate, 10 trials.
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Figure 4.13 Velocity trajectories for the reference model, TDC, and hybrid control law at
10 Hertz controller rate, 10 trials.
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4.2 HIGH PERFORMANCE AIRCRAFT MODEL

4.2.1 Aircraft Description

The high performance aircraft model that is used to illustrate the concept of learning

enhanced flight control was developed by NASA to provide the aeronautical community

with a common focus for research in flight control theory and design. This model is also

being used to serve as a basis for the 1992 AIAA Control Design Challenge (Duke (1992)).

A complete description of this generic, high performance, state-of-the-art aircraft model is

found in Brumbaugh (1991). The following summarized the major characteristics of the

aircraft model as well as its critical components.

The NASA model is the basis for the simulation of a high-performance, supersonic

vehicle representative of modem fighter and attack aircraft. This model supports virtually

all missions in nonterminal flight phases. These missions include flight phases that are

normally accomplished using gradual maneuvers such as climb, cruise, or loiter as well as

phases that require rapid maneuvering, precision tracking, or precise flight-path control

(e.g., air-to-air combat, weapon delivery, or terrain following). The aircraft model

includes full-envelope, nonlinear aerodynamics in addition to a full-envelope, nonlinear

thrust model. An illustration of the basic configuration of the aircraft is shown below in

Figure 4.14. Significant features of this aircraft configuration include a single vertical tail

with rudder surface, a horizontal stabilator capable of symmetric and differential

movement, and conventional trailing edge ailerons.
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Figure 4.14 NASA High Performance Aircraft Model

The basic geometry and mass properties of the aircraft are summarized below in

Table 4.2.

Table 4.2 Basic Aircraft Geometry and Mass Properties

Aircraft Geometry and Mass Properties

Wing Area 608.00 ft2

Wing Span 42.80 ft

Mean Chord 15.95 ft

Weight 45000.00 lb

To aide in the design and development of a competent flight control law, the model

can be easily broken into separate components, each performing a specific function. The

major components of the aircraft model are as follows: aerodynamics, propulsion, actuator

dynamics, and equations-of-motion. Also included with the model is the standard

atmosphere component, an environmental model, and the integration component that is

used to simulate the aircraft in software. Of course, one element that is not in this list is the

flight control law, which is to be determined by the designer. The function of each of the

major components, as well as a brief discussion of its origins, are presented in the

following paragraphs.

As alluded to previously, the NASA aircraft simulation contains a nonlinear, full-
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envelope aerodynamic model. The primary function of this component is the calculation

of aerodynamic forces and moments generated by the aircraft throughout its flight regime.

In general, the aerodynamic forces and moments are complicated, nonlinear functions of

many variables. The approach taken by the NASA model in calculating the complex force

values is based on modeling the force terms as the product of dynamic pressure, a reference

area (wing area), and an appropriate dimensionless aerodynamic coefficient. Similarly, the

aerodynamics moment term is modeled as the product of dynamic pressure, a reference

area, a dimensionless aerodynamic coefficient, and a reference length (mean chord). The

aerodynamic coefficients are primarily functions of Mach number, angle-of-attack, and

sideslip angle. The NASA aircraft model acquires coefficient values from multidimensional

data tables or from direct calculation. The coefficients contained in the tabular data have

been generated through a combination of wind-tunnel tests and computer programs that

numerically integrate the theoretical aerodynamic pressure over the surface of the aircraft.

For the tabular data, linear interpolation is employed to obtain intermediate values.

Vehicle thrust is generated by the propulsion model. Twin afterburning turbofan

engines, each capable of generating 32,000 pounds of thrust, deliver power to the aircraft.

Each engine thrust vector acts along the aircraft x-body axis at a point 10 feet behind the

center of gravity and 4 feet laterally from the centerline. Engine dynamics are modeled by

separating the powerplant into two separate sections. The first section, the engine core, is

modeled as a first-order, closed-loop system that outputs thrust for a given throttle input.

Moreover, rate limits that simulates spool-up effects and a gain scheduler that models

changes in performance due to Mach number and altitude changes have been added to

provide realism to the closed-loop system. Gains are obtained from tabular data and a

linear interpolation routine based on Mach number and altitude. A second section, the

afterburner, is modeled with similar first-order dynamics but has the added features of a

rate limiter and sequencing logic to model fuel pump and pressure regulator effects.

Together, these components comprise the full-envelope, nonlinear thrust model.
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Atmospheric parameters required by the aircraft simulation are computed by the

standard atmosphere model. For a given altitude, values for acceleration due to gravity,

speed of sound, temperature, and other essential parameters are generated from tables

based on the U.S. Standard Atmosphere of 1962. Linear interpolation is used between

elements of the table.

The actuator dynamics model is a first-order system that outputs surface position

for a given surface command. Furthermore, rate and position limits are included in the

system. All actuators are considered to be identical.

The dynamics of the aircraft are simulated using the equations-of-motion module.

The nonlinear equations-of-motion are derived from the general six-degree-of-freedom

relations for a rigid aircraft. Beyond the rigid body assumption, it is also assumed that the

vehicle is traveling with nonzero forward motion in an atmosphere that is stationary with

respect to an Earth-fixed reference frame. The nonzero forward motion assumption

mandates that only nonterminal flight phases be simulated by this model. Since each

degree of freedom requires two state variables (the basic variable and its rate), a total of

twelve first-order differential equations are required to completely describe the motion of

the aircraft. Table 4.3 lists each state variable and its symbol. Note that if speed is

assumed to be relatively constant, then angle-of-attack and sideslip angle may be

supplemented for the y and z body axis velocity vector projections respectively. A detailed

derivation of these equations-of-motion can be found in Etkin (1982) or Roskam (1979).

The state variables are propagated in time via the integration module. This module

uses a second-order Runge-Kutta midpoint algorithm to arrive at a new state based on the

state and control at the previous time. Running at 50 Hertz, this integration technique has

been found to provide a balanced tradeoff between numerical stability and processing

speed.
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Table 4.3 The twelve aircraft state variables and symbols

State Variables and Symbols

Displacement North x

Displacement East y

Altitude h

Velocity u

Angle of Attack a

Side Slip Angle p3

Pitch Angle 0

Roll Angle

Yaw Angle __

Roll Rate p

Pitch Rate q

Yaw Rate r

An auxiliary component of the aircraft model that is not critical to the simulation but

is invaluable to the control law designer is the observation model. The function of the

observation model is to output a large class of aircraft measurements. States, state

derivatives, accelerations, airdata parameters, force parameters, and a multitude of other

important data are furnished for observation. Of these parameters, state information as well

as vehicle body axis rates make up the set of parameters that have been traditionally used

for feedback flight control.

By linking the previously described modules, a realistic, highly complex, nonlinear

aircraft model that poses formidable challenges to the flight control designer is assembled.

The high performance aircraft computer model received from NASA was written in the

FORTRAN programming language. In order to produce a model compatible with the

NetSim simulation and design package discussed in Section 4.1.4, this FORTRAN version
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was transposed into the C programming language by the author.

4.2.2 General Aircraft Characteristics

The flight envelope of the NASA aircraft model is characteristic of a high

performance fighter aircraft (Brumbaugh (1991)). Figure 4.15 below illustrates

approximate bounds of aircraft operation in terms of altitude and Mach number.

NASA Aircraft Flight Envelope
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0 . I -
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Figure 4.15 l-g Aircraft Flight Envelope.

To examine the nonlinear dynamics of a complex aircraft model, the equations-of-

motion are frequently linearized about various operating conditions. By linearizing the

dynamics at a sufficient number of operating conditions within the envelope, an improved

overall picture of the actual nonlinear dynamics can be gained. Generally, operating

conditions near the boundary of the envelope, as well as a few centrally located points, are
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selected. The most common technique in obtaining linearized dynamics is by invoking the

small perturbation theory based on a Taylor series expansion. This theory uses

infinitesimal perturbations from an equilibrium or trimmed steady-state reference condition

to predict aircraft response to perturbations that are not infinitesimal. A trim condition is

classically defined as a constant velocity and altitude state with control surfaces and

throttles set to maintain this condition. If it is assumed that all perturbations and their

derivatives are small, the quadratic and higher order products of the perturbations will be

negligible compared to the first-order quantities. In other words, a linear model is obtained

by deriving relations of small deviations of all state and control variables about a steady-

state equilibrium condition and retaining linear terms while ignoring quadratic and higher-

order terms. A detailed version of the following short derivation of this theory can be

found in (Athans (1990)).

Let x(t) and u(t) represent state and control variables, respectively, with

x(t) E(4.8)

u(t) E9 9m  (4.9)

The nonlinear state dynamics in continuous time are given by

x(t) = f{x(t),u(t)} (4.10)

The reference state and control values representing an equilibrium condition (e.g.,

i(t) = 0) for the nonlinear equation are denoted by a subscript zero.

0 = f{XoUo} (4.11)

Small perturbations about the equilibrium condition are denoted with a lower case delta:

x(t) = xo + 3x(t) (4.12)

i(t)=&t) (4.13)

u(1) = uo + 8u(t) (4.14)

Expanding the state dynamics in a Taylor series about the equilibrium condition and solving
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for 8i(t) while retaining linear terms and disregarding higher-order terms yields the

following state perturbation dynamics:

= A0 x(t) + B08u(t) (4.15)

where

=A)4 d (4.16)dx,(t) x o.ut)--o

X(t)=ZG."CQ)=UO

(B0)j = f (4.17)
dui, (z' )=XO.-UWt=U*

Ao and Bo are the Jacobian matrices of the Taylor series expansion of f{ x(t),u(t)} centered

about xo and uo. Although the Jacobian matrices can occasionally be found in closed form

for relatively simple systems, more complex systems often require numerical

differentiation. For this reason, numerical differentiation is used for the aircraft model to

calculate the Jacobian matrices.

Using the small perturbation theory to linearize the equations-of-motion about an

equilibrium condition can provide insight into the local behavior of the nonlinear aircraft

dynamics in terms of stability, transient responses, and other system characteristics.

However, this theory is not without its limitations. Large numbers of linear models must

be computed to characterize the dynamics in highly nonlinear regions of the flight envelope.

Moreover, the small perturbation theory is ill-suited to handle phases of flight where large

deviations from the nominal trim condition are encountered (i.e., high angle-of-attack flight

or spinning maneuvers).

Linearizing the equations-of-motion of the NASA aircraft has revealed that the

longitudinal dynamics are only lightly coupled with the lateral dynamics at the majority of

flight conditions. Moreover, control of the longitudinal or pitching motion is dominated by

symmetric movement of the horizontal tail and engine thrust whereas the rolling and

yawing motions associated with the lateral dynamics are most heavily influenced by the
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ailerons and differential movements of the horizontal tail. For this reason, the aircraft flight

control design problem can be separated into two distinct problems, each less complex than

the whole. The existence of the lightly coupled modes and the ability to decompose the

control system design is common to all but the most unconventional aircraft.

The uncoupled, linearized longitudinal dynamics of the aircraft can be described by

a total of five coupled linear, time-invariant differential equations that are a function of pitch

rate, velocity, angle-of-attack, pitch angle, and altitude. If the linearized equation for the

dynamics of the total thrust in the longitudinal direction is added to this set of variables, the

state of the aircraft for longitudinal motion is as follows (where T is total thrust):

x=[q u a q h T] (4.18)

If the dynamics of the inertial altitude and thrust are temporarily neglected, the four

remaining differential equations define the traditional natural modes associated with aircraft

pitching motion, namely the short period and phugoid modes. The short period mode is

characterized by a highly damped, high frequency oscillation. The short period oscillations

represent changes in angle-of-attack and pitch angle with near constant trim speed. In

contrast, the phugoid mode exhibits very lightly damped, low frequency oscillations when

excited. Under the influence of the phugoid mode, the angle-of-attack remains essentially

constant while the speed and pitch angle experience changes. This motion represents a

continual exchange of kinetic and potential energy of a slowly rising and falling airplane.

Table 4.4 contains the natural frequencies (co,) as well as the damping ratios (4) for the

open-loop longitudinal modes (sp = short period, ph = phugoid) of the NASA aircraft

model at four equilibrium points (trim conditions) near the subsonic boundary of the flight

envelope. Trim condition 5, which is not on the boundary, is included since it will be used

as the initial condition for experiments described in Sections 4.2.5 and 4.2.6.
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Table 4.4 High performance aircraft longitudinal modes at various altitude and Mach

number trim conditions.

Natural Frequency and Damping Ratio: Longitudinal Modes

Trim Condition I Altitude I Mach -onsp sp tonph _ ph

1 5000 0.31 1.88 0.58 0.11 0.04

2 5000 0.90 4.68 0.28 ** **

3 35000 0.68 1.92 0.32 0.08 0.10

4 35000 0.90 2.11 0.21 0.02 0.12

5 9800 0.60 2.77 0.52 0.08 0.07

** at this trim condition, the aircraft does not exhibit a phugoid motion

For purposes of comparison, the values of natural frequency and damping ratio for

a high maneuverability aircraft in nonterminal flight phases can be found in the military

specification regulation, MIL-F-8785C (1980). This regulation requires the phugoid mode

to have a damping ratio greater than 0.04 and the short period damping ratio to be between

0.35 and 1.30. Moreover, the short period must have a natural frequency approximately

bounded by 1 and 10 radians per second, depending on load factor and angle-of-attack.

Examining Table 4.4 above, the NASA aircraft fails to meet the requirements for

longitudinal motion in some areas of the flight envelope. However, through the use of a

control system, the aircraft modes can be modified to meet the military specifications. For

the hybrid control law, this is accomplished by selecting a reference model that meets these

specifications.

4.3.3 Aircraft Reference Model

As discussed in Section 3.3, the reference model generates the desired state

trajectory for the hybrid controlled aircraft states. During the process of selecting a

reference model, close attention was paid to ensuring that following the reference

trajectories did not require unrealistic control actions. Since the rate and position of the
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horizontal stabilator is limited, unrealistic demands on control can translate into either rate

of position saturation (e.g., an inability to exercise the control that has been calculated by

the control law). Control saturation leads to inadequate performance (i.e., fails military or

other specifications) and possibly to instabilities.

The reference model for the high performance aircraft was chosen to be the linear

closed-loop system that results from applying an optimal linear control design to the open-

loop dynamics linearized about a selected trim condition. For the experiments in Section

4.2.5 and 4.2.6, the linearized dynamics at trim condition 5 (see Table 4.4) were used.

The state and control weights for the quadratic cost function used by the optimal control

law were initially selected using guidelines suggested by Bryson & Ho (1975) and

Kwakernaak & Sivan (1972). Trial and error (based on simulations of the linear dynamics)

were used to arrive at the final cost function. The natural frequency and damping ratios for

the modes of the closed-loop reference system are listed in Table 4.5.

Table 4.5 Reference Model Longitudinal Modes

Natural Frequency and Damping Ratio

(Onsp 4sp OI)nph 4ph

1.46 0.96 0.75 _F 0.96

Compared to the open-loop dynamics, the closed-loop reference model has modes

that are heavily damped. Moreover, the natural frequency of the phugoid is much higher in

the closed-loop system. This reference system meets military specification requirements.

4.2.4 Application Issues

In this section, the application of the hybrid flight control law to the high

performance aircraft model is discussed. Figure 4.16 illustrates the block diagram

representing the closed-loop simulation of the hybrid controlled aircraft model in the

NetSim simulation and design package.
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Hybrid Controlled Aircraft Simulation
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Figure 4.16 Block Diagram of the Hybrid Controlled Aircraft Simulation

The main modules in Figure 4.16 represent the reference model, hybrid controller,

high performance aircraft model, and the linear-Gaussian network. The function of the

remaining modules is to modify the output signals (represented by the connecting arrows)

passed to the main modules. Again, the number in the lower left comer of each block

dictates the order of execution at each time step. Modules that are called more than once per

time step are shown with multiple sequence numbers. The following paragraph outlines

the principal function of each module.

Random is the first module that is executed. It generates randomly selected

reference commands for the altitude and velocity of the aircraft within a user-defined

operating range. The length of time these commands are held constant before a new set of

reference commands is generated is also determined by the user. The commands are

supplied to the Ist Order Sys module. This module processes the reference commands

with a user-defined, rate-limited first-order filter. The purpose of this module is to smooth

the step commands generated by the random module, effectively outputting a smoothed

ramp to a step command. The function of Reference is to generate the desired state

trajectory that is to be followed by the hybrid control law. The reference model that is used

76



is discussed in Section 4.2.1. The A/C Switch module supplies the state at the current

time, as well as the state and control at the previous time step to the network. The switch

also sends a flag to the network to ensure that learning only occurs with states and controls

that are at consistent times. The linear-Gaussian network in the hybrid control architecture

is contained in A/C Net. The role of the Multiplexor (shown with sequence numbers 6

and 9) is to store the output of the learned mapping for various inputs of state and control

required by the hybrid control law. Hybrid executes the hybrid control law developed in

Section 3.3. The complete high performance aircraft is model is contained in the Aircraft

module.

4.2.5 High Performance Aircraft Experiment 1

In experiment 1, the aircraft was given random commands for altitude and velocity.

More specifically, the random altitude commands were between ±500 feet and the random

velocity commands were between ±10 feet per second. As discussed in Section 4.2.4, the

commands are filtered by a rate limited, first-order system. The rate limits for altitude and

velocity were set to 50 feet per second and 4 feet per second per second, respectively. The

filtering and rate limiting is intended to result in a physically feasible reference trajectory.

The initial condition for the aircraft was an equilibrium condition at an altitude of 9800 feet

and velocity of 539 feet per second (trim condition 5 in Table 4.4). For each new

randomly generated command, the aircraft was reinitialized to this same trim condition. By

randomly selecting commands, the objective was to generate state trajectories that fully

traverse a small region of the aircraft operating envelope.

Similar to the experiments involving the aeroelastic oscillator, the linearized

dynamics of the aircraft supplied to the hybrid controller were perturbed from their actual

values. The purpose of the perturbations was to increase model uncertainty, a feature the

hybrid controller is able to accommodate. The perturbations to the dynamics can be viewed

as a situation wherein the flight control system is provided linearized dynamics that
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represent a trim condition other than that for which the maneuvers are actually to take place.

The intent is to illustrate that the hybrid controller is able to adequately control the aircraft

given an inaccurate linear representation, indicating that less accurate a priori design

information is needed and thereby use of the hybrid controller can effectively reduce design

costs.

The learning component used in the hybrid control law was again the spatially

localized system developed in Section 3.2. For this case, the network consisted of 8 linear-

Gaussian nodes. This relatively small number of nodes was considered to be sufficient due

to the modest nonlinearities expected for the specified class of reference trajectories. Of the

two largest factors in determining the nonlinearity of the system, angle-of-attack and Mach

number, only angle-of-attack experiences significant changes during the maneuvers

associated with these reference trajectories. This is due to the relatively small commanded

changes in altitude and velocity when compared to the flight envelope, and thus small

changes in Mach number. The centers of the linear-Gaussian nodes were arranged in a

user-defined grid over the input space, with the highest density of nodes in the angle-of-

attack dimension (due to expected nonlinearities). Moreover, the spatial decay of each node

was varied as a function of the center location of its nearest neighbor. The closer the

neighboring center, the higher the spatial decay, and conversely, the farther the neighboring

center, the lower the spatial decay. This pattern ensures that each point in the input space

can be adequately mapped to the desired output values. Initial values for the slopes and

biases of the linear-Gaussian nodes were set to zero, since no a priori design information

was assumed. Due to this initialization to zero, the learning system does not impact the

states at start-up and all of the unknown dynamics are initially faced by the TDC adaptive

component. After evaluating the relative magnitude of each element of the unknown

dynamics and disturbance vectors supplied by the adaptive component, the cost function

(Equation 3.20) was weighted to ensure all errors between the desired output and actual

network output have the same significance. Equation (4.19) demonstrates how the cost

78



function can be weighted for specific errors between the desired and actual network output:

J= I,[d(x) _ f', (x, P)]T C[d(x) - f,, (x, p)] (4.19)

where C is a diagonal matrix with user-supplies weights along the diagonal. The global

learning rate (cc) was selected by trial and error in order to find the highest rate of

convergence to the desired output with adequate accuracy while still maintaining a static

mapping (i.e., one for which parameters are not in a continuous state of change).

The model of the aircraft dynamics, which is in a continuous time form, was

integrated at 50 Hertz to provide a balanced tradeoff between numerical stability and

processing speed. However, the control signal was calculated at a more moderate rate of

10 Hertz in order to reduce the real-time sensing and computation requirements in

determining the complete state.

After running the simulation with randomly generated commands for 500 trials, of

20 seconds each, the learning system was able to build a mapping of a significant amount

of the previously unknown dynamics. Since the true mapping of the unknown dynamics is

not known (in contrast to the case with the aeroelastic oscillator), the cost, as defined in

Equation (4.19), is used as a measure of performance of the learning system. Figure 4.17

illustrates both the initial cost and the cost after learning after 500 trials for a 500 foot climb

and simultaneous 10 feet per second increase in velocity.
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Cost vs Time
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Figure 4.17 Comparison between initial cost and cost after 500 trials.

Since the cost is significantly less for the case after learning, this indicates that the

learning component of the hybrid law has built a mapping of a significant amount of the

unknown dynamics. If the simulation is allowed to run even longer, the cost will further

decrease. However, since the true aircraft model dynamics are very high dimensional and

contains states that are not included as inputs to the network (e.g., the state of the

actuators), it is impossible to completely learn the initially unknown dynamics. For this

reason, there will always be a finite, non-zero cost.

The state trajectories for the reference model, for the TDC controlled aircraft, and

for the hybrid controlled aircraft for a commanded 500 foot climb and 10 feet per second

increase in velocity are shown in Figures 4.18(a) through 4.23(a). Since the difference

between these trajectories is typically small compared to the absolute initial trim values, the

errors between the desired reference and the actual trajectory for both the TDC and hybrid

controlled aircraft are shown in Figures 4.18(b) through 4.23(b). The horizontal stabilator

deflection and throttle position for the TDC and hybrid controlled aircraft are shown in
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Figures 4.24 and 4.25. These values represent the actual values used on the aircraft. Due

to actuator dynamics, these actual values are generally not the commanded output calculated

by the given control law.

As illustrated by the state trajectories, the hybrid control law offers improvements

over the TDC controller. Although the errors in velocity and altitude are relatively small,

errors in the vehicle rates and angles are significant in the sense that oscillations about the

reference trajectory are reduced. This reduction in oscillations for the hybrid controlled

aircraft has the potential to change a response that was formerly objectionable to the pilot to

one that is satisfactory. Moreover, the horizontal stabilator deflection for the hybrid

controlled aircraft is improved over that of the TDC controlled aircraft in the sense that the

control signal is less oscillatory (and subsequently less taxing on the actuators).

The trajectories for the reference model and the hybrid controlled aircraft differ for

two major reasons. The first, as previously discussed, is the inability of the learning

system to map the unknown dynamics for states that are not given as inputs to the network

(e.g., actuator states). Perhaps more significant are the difficulties associated with

attempting to control more states than there are available control inputs. Since a pseudo-

inverse must be used in the hybrid control law when the number of controls is less than the

number of states as discussed in Section 3.3, the tracking of the complete state is not

guaranteed even for a simulated case without any unknown dynamics (Anderson &

Schmidt (1990)). Due to this inability to control all the state variables, it is almost certain

that differences will exist between the reference and actual trajectories. As a result, errors

between the reference trajectory and the hybrid controlled trajectory do not necessarily

represent a failure of the learning system to map the unknown dynamics, but an inability to

control all the states to a reference trajectory with a limited number of controls.
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Pitch Rate vs Time
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Figure 4.18(a) Pitch rate trajectories for the reference model, TDC controlled
aircraft, and hybrid controlled aircraft after 500 trials.
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Figure 4.18(b) Error in pitch rate between reference trajectory and TDC or hybrid
controlled aircraft.
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Velocity vs Time
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Figure 4.19(a) Velocity trajectories for the reference model, TDC controlled
aircraft, and hybrid controlled aircraft after 500 trials.
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Figure 4.19(b) Error in velocity between reference trajectory and 'T)C or hybrid
controlled aircraft.
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Angle-of-Attack vs Time
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Figure 4.20(a) Angle-of-attack trajectories for the reference model, TDC controlled
aircraft, and hybrid controlled aircraft after 500 trials.

Angle-of-Attack Error vs Time

..........--------TDC Angle-of-Attack Error

0.0 Hybrid Angle-of-Attack Error
0.-2

-00

4.84



Pitch Angle vs Time
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Figure 4.21(a) Pitch angle trajectories for the reference model, TDC controlled
aircraft, and hybrid controlled aircraft after 500 trials.
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Figure 4.2 1(b) Error in pitch angle between reference trajectory and TDC or hybrid
controlled aircraft.
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Altitude vs Time
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Figure 4.22(a) Altitude trajectories for the reference model, TDC controlled aircraft,
and hybrid controlled aircraft after 500 trials.
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Figure 4.22(b) Error in altitude between reference trajectory and TDC or hybrid
controlled aircraft.
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Thrust vs Time
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Figure 4.23(a) Thrust trajectories for the reference model, TDC controlled aircraft,
and hybrid controlled aircraft after 500 trials.

Thrust Error vs Time

500

-500

[; .. TDC Thrust Error
Hybrid Thrust Error

-1500
0 5 10 15 20

Time (sec)

Figure 4.23(b) Error in thrust between reference trajectory and TDC or hybrid
controlled aircraft.
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Horizontal Stabilator vs Time

0.05 -
.................... TDC Horizontal Stabilator

_____H Hbrid Horizontal Stabilator

0.-5

0 .1

u 0.0 5___ 10__ 15__20

Time (sec)

Figure 4.24 Horizontal stabilator deflection for the TDC and hybrid controlled aircraft.

Throttle Postion vs Time

70- 
1

._..._. TDC Throttle
* *\Hybrid Th1rotfie

q~60-

40

30

0 5 10 15 30

Time (sec)

Figure 4.25 Throttle position for the TDC and hybrid controlled aircraft.
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Nonetheless, experiment 1 demonstrates that the hybrid controller is able to

improve the performance of the aircraft over the purely adaptive TDC controller. This

improved performance is realized by exploiting the learned functional mapping of the

previously unknown model dynamics to remove the delay associated with the adaptive

component and reduce the model uncertainty to arrive at a superior nonlinear control law.

The next experiment illustrates the ability to generalize the synthesized mapping to a larger

input space generated by using a more demanding commanded altitude rate.

4.2.6 High Performance Aircraft Experiment 2

The objective of experiment 2 is to demonstrate the local generalization abilities of

the learned functional mapping to areas of the input space that have not explicitly been

trained. By increasing the rate limit on the randomly generated altitude command to 100

feet per second, the region of the input space for which controls must be computed is

effectively increased. Moreover, the reference trajectory is more demanding in the sense

that larger controls (resulting in larger angles and angular rates) are required to follow this

trajectory.

Beyond the increased altitude rate limit, the setup of experiment 2 is identical to

experiment 1 in terms of the learning system, initialization, and control calculation rate.

Figures 4.26 through 4.31 contain the state trajectories for the reference model, TDC

controlled aircraft, and hybrid controlled aircraft for a commanded 500 foot climb (at a 100

feet per second rate) and 10 feet per second increase in velocity using the previously

trained network in experiment 1. The horizontal stabilator and throttle position applied to

the aircraft for both the TDC and hybrid responses are shown in Figures 4.32 and 4.33.
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Pitch Rate vs Time
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Figure 4.27 Veityt trajectories for the reference model, TDC controlled aircraft, and
hybrid controlled aircraft using the network learned in experiment 1.
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Figure 4.27 Velocity trajectories for the reference model, TDC controlled aircraft, and
hybrid controlled aircraft using the network learned in experiment 1.
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Angle-of-Attack vs Time
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Figure 4.28 Angle-of-attack trajectories for the reference model, TDC controlled aircraft,
and hybrid controlled aircraft using the network learned in experiment I
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Figure 4.29 Pitch angle trajectories for the reference model, TDC controlled aircraft, and

hybrid controlled aircraft using the network learned in experiment 1.
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Altitude vs Time
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Figure 4.30 Altitude trajectories for the reference model, TDC controlled aircraft, and
hybrid controlled aircraft using the network learned in experiment 1.
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Figure 4.31 Thrust trajectories for the reference model, TDC controlled aircraft, and
hybrid controlled aircraft using the network learned in experiment 1.
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As illustrated by the state trajectories, the TDC control law is unable to provide the

control necessary to reach the commanded states, whereas the hybrid controlled aircraft

generally follows the reference trajectory. Moreover, the banging of the horizontal

stabilator and throttle against their limits for the TDC controller illustrates a desperate

attempt to regain the desired state trajectory. This failure of TDC demonstrates the

consequences of not using experientially gained knowledge to remove the delay in the

estimate in the unknown dynamics and an inability to accommodate model uncertainty

(e.g., improve the a priori estimate of the control weighting matrix).

Experiment 2 also demonstrates the ability of the learning system to generalize to

nearby regions of the input space for which it has not explicitly received training samples.

This feature is especially important due to that fact that the hybrid control law uses a

passive learning system. Under passive learning, the learning system does not guide the

vehicle in an active search of the input space. Instead, the learning system is opportunistic

in the sense that it learns for a given region of the input space presented by the adaptive

controller for the state trajectories that have been flown. As a result, areas of the input

space in which TDC in unable to traverse can not initially receive training information.

However, due to generalization, the hybrid controller is able to stabilize and control the

aircraft in areas the purely adaptive control law fails. Later excursions through these

regions will provide additional inputs for the learning system to process. This, of course,

suggests a conservative approach to flight testing / learning if the hybrid controller were to

be employed. Since the hybrid controller is able to adequately control the aircraft given an

inaccurate linear representation, less a priori design information is needed (i.e., fewer

design point linearizations), effectively reducing design costs and automating the tuning

process.
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5 CONCLUSIONS AND RECOMMENDATIONS

5.1 SUMMARY AND CONCLUSIONS

This thesis describes the development and application of a hybrid control system to

the problem of flight control for a high performance aircraft. By combining an adaptive

component based on the TDC approach with a learning system, an innovative new hybrid

controller has been formed that allows each of these two mechanisms to focus on the

control objective for which it is best suited. The adaptive component of the hybrid

controller accommodates some of the unmodeled dynamics and provides estimates of any

unmodeled state dependent dynamic behavior to the learning system. The connectionist

learning system synthesizes a functional approximation of the state dependent dynamic

behavior. Using this learned mapping, the hybrid control system is able to predict state

dependent behavior, effectively removing the delay an adaptive controller experiences due

to its reactive nature.

The impact of a controller that has the ability to anticipate vehicle behavior has been

illustrated in terms of improved closed-loop aircraft performance. It has also been shown

that by using derivative information from the learned mapping, model uncertainty could be

reduced at each operating condition, essentially automating the tuning process normally

associated with gain scheduled controllers. Due to its ability to reduce model uncertainty,

the hybrid system adequately controls the aircraft even in situations where an inaccurate

linear representation was used as the system model during the initial design of the control

law. As a result, less a priori design information is needed (i.e., fewer design point

linearizations), effectively reducing design costs.
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This thesis has also demonstrated the ability of a spatially localized learning system

to synthesize a nonlinear, multivariable mapping in a control environment. More

specifically, it has been shown that a linear-Gaussian network is able to learn a functional

approximation of the initially unknown dynamics, given state and control information,

using an incremental learning approach.

5.2 RECOMMENDATIONS FOR FUTURE WORK

The major constraint to the amount of improvement the hybrid control system could

realize was not a function of the unknown dynamics or the ability of the learning system to

synthesize this mapping, but the requirement that all the states follow their given reference

trajectory. Since aircraft have more states than controls, this requirement is unrealistic from

the control standpoint. Moreover, in many cases, only a few of the states are of direct

importance. Further research following (Anderson & Schmidt (1990)) should focus on

reducing the number of controlled states to be the same as the number of control inputs.

Using this approach, the pseudo-inverse required in the derivation of the hybrid control law

would be replaced by a true inverse, essentially allowing perfect model following for the

case where all of the initially unknown dynamics are learned and there is no state and

control observation noise.

Another area for future work is the expansion of the hybrid control system to map

the entire flight envelope, as compared to a small subset of trajectories. This research

would require a much larger network than that used for the experiments in this thesis, due

to the expected nonlinearities in Mach number as well as angle-of-attack. A thorough

examination of the abilities of the hybrid control law trained over the entire flight envelope

could further highlight the advantages of this learning enhanced controller over

conventional techniques.

A future investigation into using different types of adaptive components (i.e., other
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than TDC) in the hybrid control law is recommended (Astrom & Wittenmark (1989),

Slotine & Li (1991)). Moreover, future research should examine areas of automatic flight

control other than autopilots (e.g., stability augmentation systems and control

augmentations systems) where the hybrid control law offers potential improvements.
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